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Abstract

Since neural networks are widely used, how to ensure the
reliability of neural networks has become a hot research
topic. The first difficulty is that it is difficult to give the
pre-condition and post-condition for neural networks, and
the second difficulty also exists in traditional software, i.e.,
the problem of exploding execution paths. Fortunately, the
output range of a neural network is easier to give and when
an input is given, we can obtain the activation order of
neurons in the neural network. Based on the above facts,
we propose DeepTBFV, a method for pre-trained neural
networks, which uses a testing-based formal verification al-
gorithm to derive the pre-condition of the neural network
on a specified path by post-condition. The purpose is to
verify and explain the behavior of the neural network.

1. Introduction

Although neural network has been widely used in

many fields such as NLP (natural language process-

ing), image processing and even MMML（Multi-modal

Machine Learning）, its poor reliability has also been

criticized by users for a long time. Specifically, there

are two aspects. One is that the neural network is

difficult to be verified. The reason is that the architec-

ture of the neural network is based on experience, and

the parameter is constructed by back-propagation of

the training data. It is difficult to give a formal spec-

ification like traditional software, and the verification

of the neural network is an NP-hard problem[1], which

makes it difficult to achieve complete verification of the

large models. The second is that the neural network

is difficult to be explained, that is, it is difficult for

us to figure out what features the result of neural net-

work reasoning is based on. For instance, although a

neural network correctly recognizes the cat in the pic-

ture, we cannot determine whether the neural network

correctly recognizes the cat through its features or the

watermark in the picture.

Generally, the post-condition of a neural network is

easy to give. If the pre-condition can be derived from

the neural network by using the post-condition, then

users can use the pre-condition to explain and verify

the reliability of the neural network. However, since

the verification of neural networks is an NP-hard prob-

lem, it is very difficult to derive the preconditions from

the post-conditions simply by using the verification al-

gorithm.

Existing methods mainly focus on how to acceler-

ate the verification speed of neural network under the

premise of given formal specification [2, 3, 4, 5]. These

studies provide a basis for the verification of neural net-

works, but do not discuss how to give a pre-condition

to explain neural networks. Test-based neural network

interpretation algorithm can explain the behavior of

the local neural network by testing and constructing

the local interpretation model of the neural network

[6, 7, 8]. But they cannot be used to formally ver-

ify the reliability of neural networks. In other words,

it can not be guaranteed that there is no adversarial

examples in the neural network within a certain range.
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In this paper, We propose DeepTBFV , a method

to give the pre-condition of neural network by back-

ward derivation of the post-condition of neural net-

work. DeepTBFV is inspired by Testing-based formal

verification (TBFV) [9, 10, 11] in traditional software.

First, we select a test case that can be correctly recog-

nized by the neural network and execute it. During the

execution of the test case, the activation of each neuron

is recorded. Here, we compare the activation sequence

of neurons to the execution path of the test case in tra-

ditional software. Therefore, recording the activation

sequence of neurons is the execution path of the test

case generated by the neural network. Then, accord-

ing to the execution results of the neural network, the

post-condition of the test case is given, which is used

to derive the pre-condition.

Finally, we combine the post-condition and the ex-

ecution path on the neural network to form a system

of linear inequalities with multiple variables. The pre-

condition of the neural network is obtained by solv-

ing the system of linear inequalities with multiple vari-

ables.

In brief, the main contributions of this paper are as

fellows:

• To my best knowledge, we develop the first testing-

based formal verification method for DNNs.

• We design a verification based neural network re-

training algorithm.

2. Preliminary

2.1. Testing-based formal verification

The testing-based formal verification (TBFV) is pro-

posed to ensure the correctness of all traversed program

paths in traditional software. The first step of TBFV

is to generate a test case T based on the test condi-

tion in the formal specification. The second step is to

obtain a traversed program path by executing the test

case T execution program P , where the path contains

a series of conditions. The third step is to verify the

reliability of the path under the formal specification by

using symbolic execution or Hoare logic [12].

2.2. Floyd-Hoare Logic

Floyd Hoare logic, also known as Hoare logic, repre-

sents predicate logic and a set of axioms in the form of

Hoare triples, and then defines the semantics of the pro-

gramming language. The specific form of Hoare triples

is as follows:

{pre} c {post}

where c is a specific program code, pre indicates the

preconditions in the program, which describes the pro-

gram state before executing c, and post indicates the

post condition in the program, which describes the pro-

grams the program state after executing c. Such a

Hoare logic triple indicates that if an input of the pro-

gram c meets its pre, the output of c should meet post

after executing program c. Otherwise, program c must

have errors.

In order to formalize the program, Hoare logic de-

fines inference rules for each of grammar clauses. The

detailed rules are as follows.

Assign
{Q(E/x)} x := E {Q}

The rules is to perform the assignment statement

x := E on all x in the precondition {Q(E/x)}, that is,
to replace all x in the precondition with E to obtain

the post condition {Q}. Similarly, the following two

rules can exist.

Preconditions reinforcement rule:

Pre
P ⇒ P ′ {P ′}c{Q}

{P}c{Q}

Post conditional weakening rule:

Post
{P}c{Q′} Q′ ⇒ Q

{P}c{Q}

By formalizing the program with these rules, we can

get a series of constraints of the program, and then use

SMT solver. Solve the corresponding rules.

2.3. Verification of neural networks

Deep neural network is a mapping in high-

dimensional space, which can be formally expressed as

f : Rn → Rm.
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Figure 1. Execution path generation

if there is a set of constraints ϕ which is the precon-

dition of f on Rn, and existence a set of constraints

φ which is the post condition of f on Rm. Then, the

problem of neural network verification is transformed

into proving that ∀x ∈ Rn : ϕ(x) → φ(f(x)) is satisfied

or not.

3. Methodology

In this section, we propose an algorithm to derive the

pre-condition of a pre-trained neural network from its

post-condition, named DeepTBFV. The pre-condition

can be used to verify and explain the behavior of the

neural network and assist developers to increase the

reliability of the neural network. First, we forward

propagate a test case on a neural network, and gen-

erate the execution path of the test case. Second, we

propose a technique to encode the execution path as a

multivariate linear inequality system, and since the ac-

tivation state of neurons is fixed in the execution path,

the linear constraints generated by the execution path

do not need to introduce the relaxation variables. Fi-

nally, we use the classification results obtained from

this test case to define the post-condition of the test

case and derive the pre-condition in reverse. The pro-

cess of defining the post-condition is based on an as-

sumption that will be described in the third summary.

3.1. Testing-based neural network execution

path generation

The execution of a test case by the neural network

means that the test case is used as the input for forward

propagation. In the process of forward propagation,

the state of each neuron is fixed. That is, we consider

a neuron ni in a neural network NN to be activated

for the test case if its output is greater than a threshold

value. Conversely，if ni is less than the threshold, then

the neuron ni is not activated. We record the activation

state of each neuron when the NN forward propagate

for the test case.

Formally, we define all neurons in NN as the set

neurons. Then, the neurons activated in NN can be

defined as the set ActiveN = {n | n ∈ neurons ∧
Out(n)>θ}, where θ is the threshold in neurons and

out(n) record as the output value of neuron. Similarly,

the inactive neurons in NN can be defined as the set

InactiveN = {n | n ∈ neurons ∧ Out(n) ≤ θ}. as

shown in figure 1, in the forward propagation of neural

network, we use blue for the neurons activated in the

test case and red for the inactive neurons. Then, the

process of assigning activation states to the neuron in

neurons through the test cases is called execution path

generation.

3.2. Formal modeling of neural network pathes

Since the state of activation of each neuron is fixed,

we can convert the state of each neuron into a multiple

linear inequality. Let Neuroni
j = {xi−1

1 , xi−1
2 , · · ·xi−1

n }
is the set of inputs of the j-th neuron in the i-th layer

of the neural network NN . If the activation function

of Neuron is ReLU and is activated by the test case,

the activation state of the neuron can be modeled as

follows,

If : Neuroni
j ∈ ActiveN

Then : Out(Neuroni
j) = wi−1

1 ·xi−1
1 · · ·+wi−1

n ·xi−1
n >0

Similarly，if the neuron is not activated by the test

case, then the activation state of the neuron can be

modeled as follows,

If : Neuroni
j ∈ InactiveN
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Then : Out(Neuroni
j) = wi−1

1 ·xi−1
1 · · ·+wi−1

n ·xi−1
n ≤ 0

According to the above rules, we can model the pro-

cess of forward propagation of test cases in the neural

network into a system of multivariate linear inequali-

ties. Algorithm 1 specifically describes how to model

the execution path of nn.

Algorithm 1: Formal modeling of NN pathes

Input: Neurons ; ActiveN ; InactiveN

// List of linear constraints

corresponding to neural network

Output: Constraint

1 Constraint = list()

2 for neuron in Neurons do

3 if neuron in ActiveN then

4 Constraint.append(Out(neuron)>0)

else

5 Constraint.append(Out(neuron) ≤
0)

6 end

7 end

8 end

9 return Constraint

3.3. Deriving Preconditions from Postcondi-

tions

When the state of each neuron in the neural network

is fixed, we only need to carry out the Floyd-Hoare

Logic assignment statement for the constraint of each

neuron. This means that the constraints of each neu-

ron are replaced by variables through the assignment

statement. The constraints of each neuron we can get

only include the input of the neural network.

Specifically, let Inp = {x1, x2, · · ·xn}, Inp ∈ Rn as

the input of the NN and Out = {y1, y2, · · · ym}, out ∈
Rm as the output of the NN . Moreover, We record

the replacement expression of the j-th neuron in the

i-th layer as f i
j . Then the constraint corresponding to

neurons can be denoted as

f i
j(x1, x2, · · ·xn) ≤ 0

or

f i
j(x1, x2, · · ·xn)>0

The constraints of the output layer of the neural

network are different from those of the middle layer.

It should conform to the user-defined post-condition.

Here, the constraints of neurons in the output layer

can be denoted as,

αj ≤ yj(x1, x2, · · ·xn) ≤ βj

Where yj(x1, x2, · · ·xn) is a multivariate linear

polynomial.j represents the j-th output of the out-

put layer. The interval Oj = [αj , βj ] means the post-

condition of yj .

In addition, we also propose a method to construct a

post-condition for the path generated by test cases. If

the test case activates a neuron in the output layer, it

means that the output value of the activated neuron is

greater than that of other inactive neurons. Therefore,

we can formally record this statement as yaj>yini , where

i ∈ {1, 2 · · ·m}\{j}, a represents activated neuron，in

represents inactive neurons. The activated neurons are

marked as j. Since the output value of a neuron has

an upper and lower limit, such as INT8 quantization

of a neural network, the output values of neurons are

quantized to the [−128, 127]. Therefore, we can also

give the upper and lower limits of the output value of

neurons in the output layer. Let the upper and lower

bounds of the output layer neurons be [l, u]，where the l
denote upper bound, and u denote lower bound. Then,

∀yi ∈ Out, ∃ αi ≤ yi ≤ βi

where i ∈ {1, 2, · · ·m}, and m is the number of output

layer.

4. Case Study

In this section, we use a three-layer neural network

to show how DeepTBFV works and to demonstrate its

effectiveness. Consider a ReLU-based neural network

G. The structure and weights of this network are shown

in Fig 2. Without loss of generality, we can assume

that bias = 0 for each neuron in G. We denote the
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neurons of the input layer, the neurons of the hidden

layer and the neurons of the output layer as {x1, x2},
{h1, h2, h3}, {y1, y2} respectively.

To execute DeepTBFV for G, all the steps are given

in sequence as follows:

Step 1: Select the test case of interest as input to the

neural network, suppose we use x1 = 1, x2 = 2 as the

test case.

Step 2: Record the activation of each neuron in the

hidden layer of the neural network,

h1 = ReLU(−x1 + 2x2 = 3) ∈ ActiveN

h2 = ReLU(2x1 − x2 = 0) ∈ InactiveN

h3 = ReLU(x1 + x2 = 3) ∈ ActiveN

Step 3: Generate neural network middle layer con-

straints,

h1 = −x1 + 2x2>0

h2 = 2x1 − x2 ≤ 0

h3 = x1 + x2>0

Step 4: Generate output layer constraints, here we

assume that the output layer has constraints,

5 < y1 = h1 − h2 + h3 < 7

3 < y1 = h1 + 2h2 + 0.5h3 < 5

Step 5: Through Floyd-Hoare Logic, the system of

inequality equations for each neuron in the input layer

is derived backwards,

2x1 − x2 ≤ 0

−x1 + 2x2>0

−x1 − x2<0

3<− 0.5x1 + 2.5x2<5

5<3x2<7

-1
2 -2 -1 1

1

1 -1
1 1

2 0.5

1x 2x

1h 2h 3h

1y 2y

1 2

15 7y 
23 5y 

Figure 2. Example showing How to execute

DeepTBFV

5. Related Work

In recent years, with the extensive application of

deep learning, its reliability and interpretability have

been increasingly concerned by the security commu-

nity. Heuristic algorithms provide a fast and efficient

way to interpret neural networks.

The heuristic algorithm provides a fast and effective

way to explain the neural network. LIME[13] uses a

testing-based method combine regression to explain the

local characteristics of neural networks. Similar algo-

rithms are anchors, etc[14, 15, 16]. Although heuristic

algorithms can provide quick explanations, the result-

ing explanations are not guaranteed by formal verifica-

tion.

Meanwhile, rigorous formal verification provides an-

other perspective to ensure reliability and provide ex-

planations. The work of reluplex et al.[17, 18, 19] per-

forms formal verification of neural networks based on

specification. It can guarantee that the verified neural

network is safe and secure under formal specification.
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However, reluplex[?] also proved that the verification

problem of neural networks is NP hard. And the inter-

pretation of verification-based neural networks is like-

wise based on verification solvers. Therefore, Trustable

XAI et al.[20, 21] faces the same problem of difficulty

in interpreting large neural networks.

6. Conclusion

We propose DeepTBFV, a test-based approach to

generate execution paths for a test case in a neural net-

work and derive the pre-condition(linear constraints) of

the input to the neural network backwards by means

of a custom post-condition. To my best knowledge, we

are the first to apply the idea of TBFV to the field of

verification and interpretation of neural networks.

7. Future Work

In this paper, we focus on how to use the principle of

TBFV to generate the pre-condition of neural network.

However, it did not analyze in detail how to generate

test cases and how to use the generated constraints to

verify or explain the behavior of neural networks. In

future work, we will focus on the following two parts:

• How to choose the appropriate test case so that

the constraints generated by DeepTBFV for that

test case are more locally interpretable.

• How to analyze the constraints generated by

DeepTBFV so that the constraint results can help

people intuitively understand the neural network.
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