2023 in

Testing-Based Formal Verification on Software Programs: A Review

Ai Liu
Hiroshima University
livai@hiroshima-u.ac. jp

Abstract

Testing-based formal verification has been pro-
posed to automatically verify whether a software
program satisfies the requirements written as a
formal specification by exploring program paths.
There are two tools that can be used to verify
path correctness: Hoare logic or symbolic execu-
tion. In this document, we will discuss their mer-
its and demerits, as well as the future research
directions.

1. Introduction

Software testing, one of the most frequently used
quality assurance methods, is focused on sampling the
executions, according to some coverage criteria, and
comparing the actual behavior with the expected be-
havior. Nevertheless, a typical weakness of testing is
that it cannot generally tell the absence of bugs in pro-
grams. To find more bugs, more test data need to be
generated and more program executions, which will in-
evitably increasing the cost. An idea for improvement
is to ensure the correctness of the executed path for
a given test case with formal methods and then all of
the test cases, resulting in the same executed path, will
satisfy the expected behavior.

Formal methods, based on some mathematical the-
ories, are a collection of notations and techniques, in-
cluding specification and verification [1]. Formal spec-
ification techniques introduce a precise and unambigu-
ous description of the software behavior. Given such
a specification, it is possible to use formal verification
techniques to demonstrate that a software design is cor-
rect with respect to the specification. However, most
of software verification methods do not guarantee the
correctness of actual code, but rather allow one to ver-
ify some abstract model of it. Hence, due to possible
differences between the actual software system and its
abstract model, the correctness of the proof may not
carry over. To ensure the correctness of the code, de-
ductive verification, including symbolic execution and

Shaoyin Liu
Hiroshima University
sliu@hiroshima-u.ac. jp

Hoare logic, has been demonstrated mainly for simple
programs which contain no loop sentences and no side
effects.

Hoare logic is established based on predicate logic
and provides a set of axioms to define the semantics
of programming language [2]. For each program con-
struct, such as sequence, selection, or iteration, an ax-
iom for defining its semantics is defined. These axioms
can be used to reason about the correctness of pro-
grams written in a programming language. However,
the axiom for iteration is hard to be directly used since
the derivation of loop invariants may not be easy.

Symbolic execution systematically explores the pos-
sible paths of a program’s execution by executing the
program with symbolic inputs instead of concrete val-
ues and then allows the tester to explore different exe-
cution paths and detect potential bugs and vulnerabil-
ities [3]. Symbolic execution is often used in combina-
tion with other techniques such as model checking and
theorem proving to verify the correctness of software
systems. There are severe challenges of symbolic exe-
cution such as path explosion and constraint solving.
Nevertheless, it is an active area of research, and new
techniques and tools are constantly being developed to
improve its efficiency and effectiveness.

A natural idea is to combine testing and formal
methods (specification and verification) to make the
best use of their merits while reducing the cost. As
Whittaker noted “Without a specification testers are
likely to find only the most obvious bugs” in 2000,
specification-based testing (SBT) has been advocated
for a long time [4, 5]. However, due to the weak-
ness of testing to tell the absence of bugs in programs,
specification-based testing also need high test cost in
order to improve software reliability. For the purpose
to improve specification-based testing with formal ver-
ification techniques, a method known as testing-based
formal verification (TBFV), characterized by the inte-
gration of specification-based testing with Hoare logic
to ensure the correctness of program paths which con-
tain no loop sentences and no side effects, has been ex-

38 SEA



plored and its initial idea is proposed in [6]. The idea is
further developed to combine with program inspection
later [7]. A collection of prototype tools to illustrate
how to support the TBFV method is presented in [8].
The original framework of TBFV is extended in [9] to
deal with operations, which may involve with complex
data structure and side effects, in software packages,
such as Vector, ArrayList and LinkedList packages in
Java language. Before that extension, testing-based
formal verification with symbolic execution is alterna-
tively proposed as an improved method by replacing
the application of Hoare logic with symbolic execution
in [10]. Branch sequence coverage (BSC) for TBFV-SE
is considered in [11] and a fault localization approach is
proposed to further pinpoint the problematic positions
in the incorrect program paths given by TBFV-SE in
[12]. Moreover, the idea is also applied to the verifica-
tion of neural networks, resulting in TBFV-INN, a new
framework for verifying and improving neural networks
[13].

As previously mentioned, since TBFV is firstly pro-
posed, it has been constantly improved on two roads:
one is based on Hoare logic and the other is based on
symbolic execution. In this document, we will enjoy
different scenery and discuss which treasure we intend
to dig on the two roads in the future.

The rest is organized as follows. Section 2 intro-
duces the framework of testing-based formal verifica-
tion. Section 3 describes the framework of test-based
formal verification with symbolic execution. Section 4
discusses the merits and demerits of TBFV and TBFV-
SE.

2. The Framwork of TBFV

In formal methods, the first step to implement an
operation is usually to write a formal specification to
describe its requirements. The assumption for TBFV
is that the operation specification S can be represented
as a functional scenario form /", (T; A D;) where T; is
called a test condition and D; is called a defining condi-
tion. A test condition is a constraint only on the input
variables, while a defining condition contains at least
one output variable. The functional scenario T; A D;
describes a single specific functional behavior: when T;
is true, the output of the operation is defined using D;.
Given an operation specification S = /!, (T; A D;)
with a program P, the TBFV method is proposed to
tackle the problem whether both input and output vari-
ables satisfy D; after P is executed if input variables
satisfy the corresponding T;.

The framework of TBFV is illustrated in Figure 1
and explained as follows.

2023 in

Generate a test case t satisfying some T} ‘

Obtain the traversed path path; with
method conditions {MC;}

I

Derive the pre-condition C; A Dj, A F'S’ for path,
with {MC;} from the post-condition Dy A F'S

I

| Validate the implication Ty, A Cy = Dj, A F'S'

Figure 1. The framework of TBFV

e The first step is to randomly generate a test case
t satisfying some test condition Tj. Only one
test condition will be satisfied due to the well-
formedness of the specification. Note that when
the program involves with a method invocation of
a complex component (such as Vector, ArrayList
and LinkedList in JAVA), the test case ¢ needs to
contain the initial component state.

e The second step is to execute program P with test
case t and obtain a traversed program path path;,
which is a sequence of guard conditions, assign-
ment statements and method invocations. Each
method has already been equipped with a Hoare
tripe which may contain multiple activated guard
conditions. The activated guard condition M C; of
the i-th invoked method should also be recorded.

e As the test case t must contain the initial com-
ponent state, correspondingly, the post-condition
should be not only the defining condition Dy, but
the conjunction of the defining condition and the
final component state Dy A F'S (each component
has a final state representation F'S). Assuming
such post-condition, we can backwards derive the
pre-condition Cy A Dj A F'S’ of path, with method
conditions {MC;} where Cy is the conjunction of
guard conditions in path; after replacing all inter-
mediate variables with expressions of input vari-
ables and D} AF'S’ is obtained by replacing all out-
put variables with expressions of input variables in
the derivation process.

e The final step is to find whether T A C; implies
D;. A FS’ with the aid of theorem provers. If it is
a tautology, path; with method conditions {MC;}
is correct with respect to the specification S; oth-
erwise, there must be errors in path;.

If the path correctness is ensured, all test cases vali-
dating T A Cy will satisfy the specification. Then, we

39 SEA



can choose a test case t validating Ty A —C} to continue
the above steps.

Example 1. Consider a jump function f whose do-
main is the set of integers 7 and output is

1 z>0

y=f(w)={0 =0

Then, the corresponding FSE S is
(x€ZNz>0ANy=1)V(x€ZANxz<0Ay=0)
Consider the following program:

int jump(int x){
int y = 0;
if (x >=0)
y=x+2)/(x+1);
return y;

}

where variable x is the input and variable y is the out-
put. If the given input is * = 1, the corresponding
testing condition is x € Z A x > 0 and defining condi-
tion is y = 1. Then we can derive the pre-condition for
the corresponding path as follows

{x>0A1=(z+2)/(x+1)}
y=0
{z>0A1=(z+2)/(x+1)}
x>=0
{1=(+2)/(z+1)}
y=(x+2)/(x+1)
{y=1}

The next step is to consider the implication

T E€EZLNz>0Nz>0=1=(x+2)/(z+1)

which is true for x > 0 due to the division operation
of integers but false when x = 0. If we only use test-
ing, we may select many test cases in which x # 0
and produce the test results as expected. In this case,
the contradiction can not be revealed. However, using
TBFV, we can get the same path and implication once
a test case x > 0 is chosen, and find the contradiction.

3. The Framework of TBFV-SE

Testing-based formal verification with symbolic exe-
cution (TBFV-SE) has already been a method to au-
tomatically verify the correctness of all the representa-
tive program paths given the formal specifications and

2023 in

derived a fault localization approach. In TBFV-SE,
the correctness of each path is also converted into a
theorem obtained during a dynamic symbolic execu-
tion, rather than the derivation by Hoare logic. The
framework of TBFV-SE is illustrated in Figure 2 and
explained as follows.

e Naturally, the first step is also to generate a test
case t, but there is no need to fix a test condition.
The initial component state should be included in
the test case if some component method is invoked.

e After executing program P with test case t, a tra-
versed program path can be obtained. Replacing
test case t with symbol values and applying sym-
bolic execution for that path, all the output vari-
ables, path conditions and component states are
finally related to the symbol values. We use C;
and state; to denote path-condition, the integra-
tion of all path conditions and a symbolic state
including all output variables and all component
states, respectively.

e Although the test case t only validates a testing
condition, there may exist other test cases, val-
idating different testing conditions, which result
in the same traversed path. If the implication
Cy NT; = state; A\ D; is tautologous, it means that
the test cases validating testing condition 7; and
resulting in this traversed path satisfy the specifi-
cation. There, the theorem we intend to prove is
Vi Cy ANT; = state; A\ D;, which ensures the path
correctness.

e Branch sequence coverage (BSC) is proposed to
automatically partition the domain by dynami-
cally gathering all the necessary symbolic paths
since each symbolic path is selected to represent
a sub-domain. This partition is depended on a
dynamic light analysis of code structure without
judging if the branch conditions are serialized or
nested. Unlike conventional partition testing se-
lecting classical values from classes to test, BSC
focuses on automatically selecting a real symbolic
path for representing each sub-domain according
to the real structure of codes. There is an algo-
rithm to automatically find test cases satisfying
BSC in [11].

e A fault localization algorithm is proposed in [12]
to provide a rigorous way to automatically analyze
the correctness of statements in a program based
on the theorems of the traversed paths and help
locate the faults in a small set of statements by
examining very small percentage of the code.

40 SEA



Generate a test case t

Carry out the symbolic execution of the program
path traversed by t to obtain a symbolic
path-condition Cy and a symbolic state state;

|

Validate the theorem Vi C; A T; = state; N D;

l

Continue generating test cases until
they satisfy branch sequence coverage criterion

[

Analyze the fault location
if there are incorrect theorems

Figure 2. The framework of TBFV-SE

Example 2. Reconsidering Example 1 with TBFV-SE,
the derivation of path-condition and the record of states
for the traversed path by the input x with numeric value
1 and symbolic value X is displayed in Table 1. The
last line of second column of Table 1 shows both the
symbolic state and symbolic path-condition. Then, the
induced theorem is

X+2

X+1
X+2

X+1

x€ZAx>0Nx>0=>y=1Ay=

A
)

x€ZAx<OANx>0=>y=0Ay=
where the first sub-formula is false while the second sub-
formula is true. We just use this simple example to
show how symbolic execution help derive theorems in
TBFV-SE.

Table 1. Single path of symbolic execution

program code symbolic execution
input: x =1

symbolic value of x : X

int jump(int x)

inty=0 state: {y =0}
if (x >=0) path-condition: X >0
y=(x+2)/(x+1) state: {y:ﬁ:—?
return y {y= %},XEO

4. Merits and Demerits

As for our goal to verify whether a program satis-
fies its corresponding specification, TBFV and TBFV-
SE can both automatically generate test cases, obtain
traversed paths and induce theorems. Next, external
theorem provers will be used to validate the induced

2023 in

theorems. Further, TBFV-SE has been enriched with
two algorithms to find representative program paths
and analyze the correctness of statements. We mainly
compare the common procedures of TBFV and TBFV-
SE.

Given a test case t, TBFV and TBFV-SE will ob-
tain the same program path path;. The difference is
the way to derive the theorems, as depicted in Exam-
ple 1 and 2. In TBFV, we need to preselect a functional
scenario T; A D; and the derived theorem can only rep-
resent whether the traversed path satisfies that func-
tional scenario. In TBFV-SE, the derived theorem can
be used to judge whether the traversed path satisfies
all functional scenarios. Given the test cases inducing a
traversed path, if some of them validate a testing condi-
tion T; and the rest validate another testing condition
T}, we just need one derivation process of the theorem
in TBFV-SE while we should need two derivation pro-
cesses of the theorem in TBFV. In that case, TBFV-
SE should be more efficient than TBFV. Nevertheless,
TBFYV will have an advantage than TBFV-SE in cases
including many intermediate variables and irrelevant
variables, as depicted in Example 3.

Example 3. Consider the following program which
implements a piecewise function,

int piece(float x){
float y1 =1 —x;
float y2 = 2x;
float y3 = 1/x;
if (x < —4)
y=yh

else if (-4 <x<0)
Yy =y2

else
y =3

return y;

}

For any input value, the traversed path must include the
first three assignment statements. Assume the input is
0 and the corresponding functional scenario is T N D
where D only includes the variable y, the derivation by
Hoare logic is below.

{—4<2<0AD?2z/y)}

yl=1-x
{—-4<2z<0AD(2z/y)}
y2 = 2x

{—4<2<0ADY2/y)}

41 SEA



y3=1/x
{—4<2<0AD(y2/y)}
—4<x<0
{D(y2/y)}
y=y2

{D}
Then, the theorem to be proved in TBFYV is
TAN-4<z<0= D(2z/y)

The corresponding symbolic execution is shown in Table
2 where we omit the skipped statements. Then, the
theorem to be proved in TBFV-SE is

TAX>4A-4<X<0

1
éD/\ylzl—X/\szQX/\yiizi/\y:2X

Table 2. Symbolic execution for x = 0
program code symbolic execution
input: x =0
symbolic value of x : X
state:{yl =1 — X}

int piece(float x)

float y1 =1 —x

float y2 = 2x state:{yl =1 — X,y2 = 2X}
state:{yl =1 —X,y2 = 2X
float y3=1/x ’ ’
3=1/ y3 =%}
ifx<—4 path-condition X > 4

- — =
else if —4<x<0 path-condition X > 4A

—4<X<0
state:{yl =1 — X, y2 = 2X,
=y2
Y=y y3 =1, y=2x}
{yl=1—-X,y2 = 2%,
return y y3 = 3,y = 2X},

X>4A-4<X<0

Obviously, the theorem obtained by TBFV-SE is
more complex than the theorem obtained by TBFYV,

Actually, we must simplify the theorem obtained by
TBFV-SE as

TAX>4A-4<X<0=DAy=2X

which can be proved by theorem provers, since the for-
mulas yl =1—X, y2 = 2X and y3 = % are undecidable
equations. Moreover, D Ay = 2X can be further sim-
plified as D(2X/y). Therefore, the theorem obtained by
TBFV is more concise and there is no need to record in-
termediate variables (e.g. y2) and irrelevant variables

(e.g. y1 and y3) in TBFV.

2023 in

5. Conclusion and Future Work

TBFV and TBFV-SE are both currently able to re-
duce test cost by ensuring path correctness, while each
of them has its advantages and disadvantages. TBFV-
SE includes a fault localization algorithm based on the
traversed paths obtained by test cases satisfying branch
sequence coverage criterion. In the future, we intend
to locate faults in a single path which is proved to have
errors by TBFV.

References

[1] Peled, D. A.
Springer, 2001.

“Software Reliability Methods”,

[2] Hoare, C. A. R. and Wirth, N. “An Axiomatic Def-
inition of the Programming Language PASCAL”,
Acta Informatica 2, pp. 335-355, 1973.

[3] Cadar, C. and Sen, K. “Symbolic Execution for
Software Testing: Three Decades Later”, ACM,
2013.

[4] Whittaker, J. A. “What is software testing? Why is
it so hard? Practice Tutorial”, IEEE Softw. 17(1),
pp. 70-79, 2000.

[5] Chen, Y. and Liu, S. “An Approach to Detecting
Domain Errors Using Formal Specification-Based
Testing”, Proceedings of APSEC 2004: 276-283.

[6] Liu, S. “Utilizing Hoare Logic to Strengthen Test-
ing for Error Detection in Program”, Proceedings of
Turing-100 2012, pp. 229-238.

[7] Liu, S. and Nakajima, S. “Combining Specification-
Based Testing, Correctness Proof, and Inspection
for Program Verification in Practice”, Proceedings
of SOFL+MSVL 20183, pp. 3-16.

[8] Liu, S. “A Tool Supported Testing Method for Re-
ducing Cost and Improving Quality”, Proceedings
of QRS 2016, pp. 448-455.

[9] Liu, A. and Liu, S. “Enhancing the Capability of
Testing-Based Formal Verification by Handling Op-
erations in Software Packages”, IEEE Trans. Soft-
ware Eng. 49(1), pp. 304-324, 2023.

[10] Wang, R. and Liu, S. “TBFV-SE: Testing-Based

Formal Verification with Symbolic Execution”,
Proceedings of QRS 2018, pp. 59-66.

42 SEA



2023 in

[11] Wang, R. and Liu, S. “Branch Sequence Cover-
age Criterion for Testing-Based Formal Verification
with Symbolic Execution”, Proceedings of QRS-C
2019, pp. 205-212.

[12] Wang, R. et al. “A Fault Localization Approach
Derived from Testing-Based Formal Verification”,
Proceedings of ICECCS 2022, pp. 165-170.

[13] Liu, H. et al. “Verifying and Improving Neu-
ral Networks Using Testing-Based Formal Verifica-
tion”, Proceedings of SOFL+MSVL 2022, pp. 126-
141.

43 SEA





