
Human-Machine Pair Programming

for Future Software Engineering

人間とマシンのペアプログラミング

Shaoying Liu (劉少英)

広島大学・大学院理工系科学研究科

Email: sliu@hiroshima-u.ac.jp

HP: https://home.hiroshima-u.ac.jp/sliu/

Overview

1. Why Human-Machine Pair Programming

(HMPP)（何故人間とマシンのペアプログラミン
グ）?

2. Theoretical Foundation and Framework for

HMPP（HMPPの理論基礎とフレームワーク）

3. Knowledge Classification（知識分類）

4. HMPP for Agile-SOFL （Agile-SOFLにおける
HMPP）

5. Challenges（課題）

6. Conclusions（まとめ）

7. Future Work（将来研究）

1. Why Human-Machine Pair

Programming

（何故人間とマシンの
ペアプログラミング）?

(1) What is pair programming (PP)（ペアプログラ
ミングとは）?

Definition: Pair programming is one of the

techniques in the Extreme Programming agile

software development method in which

two programmers work together at one

workstation.

Agile Development

アジャイル開発
Agile software development is an

evolutionary development technique that

emphasizes the following values:

• Individuals and Interactions over processes

and tools

• Working Software over comprehensive

documentation

• Customer Collaboration over contract

negotiation

• Responding to Change over following a plan

Why Not Other Methods

（何故他の開発手法を使わないの）?

Model-Driven Development (MDD)

Model (e.g., UML) → Code → Testing

Formal Methods (FM)

Specification → Code → Verification

Component-Based Development

(CBD)

Components → Code → Testing

時間消耗,

文書管理,

保証なし,

作成困難,

顧客との協力
制限

適切なコンポ
ーネントの検
索、選択、検証
などが困難.

一定の効果が
ある。
,

Why Are Agile Methods

Popular?
⚫Consistent with the nature of evolution

(changes) in software development (design-

oriented)

⚫Timely and comprehensible communication

and interactions between the developer and

the customer

⚫One level documentation (code) for time

saving

Is Agile Methods Perfect?

No! It is impossible!!!

◆ Frequent changes of code

◆ Architecture-related errors

◆ Data structure-related errors

◆ Algorithm-related errors

Insufficient

time and

consideration

for

requirements

analysis and

design.

How Can We Improve It ?

⚫Specification-Based Programming (for

improving understanding of requirements and

design)

⚫Pair Programming (for improving interactions

and cooperation)

1)Two programmers work together. One is

called driver and the other is called

observer or navigator.

2)The driver writes code, while the observer

reviews each line of code as it is typed in.

3)The two programmers switch roles frequently.

Characteristics of

Pair Programming

Problems:

❖There is a lack of clear principle to govern the

process of working together by the two

programmers

❖ The work can be considerably affected when

the collaboration of the two programmers does

not go well.

❖It is more costly than one-person

programming.

Question

How to take advantage of both specification-

based programming and pair programming and

limit their disadvantages?

Solution:

Human-Machine Pair Programming(HMPP) (for

automatic monitoring, predicating, and

incremental program review)

(2) What is human-machine pair programming

(HMPP)?

Definition: HMPP means that a programmer

and computer work together to construct a

program, where the programmer plays the role

of driver and the computer plays the role of

observer.

program = specification or

code or

combination of both

Characteristics:

A) One programmer works together with

computer in programming.

B)The programmer constructs the program,

while the computer analyses the program that

has been typed in to detect bugs and to

predict code fragments.

C) It is much less costly than conventional pair

programming and human mistakes will be

significantly reduced.

2. Theoretical Foundation and

Framework for HMPP

The theoretical foundation defines the

roles of computer in HMPP and the

principle of fulfilling each role.

The framework provides an architecture

and procedure for realizing the roles of

computer (design for tool support) in

HMPP.

An Evolutionary View of

Programming

The research on HMPP focuses on the observer role of

computer and on dealing with the problem of how to

construct a correct program S through a series of

evolutions of partial programs:

S1 ≪ S2 ≪ … ≪ Sn = S

where each Si (i = 1..n) is a partial program (program

segment), and S is the completed program.

S1 ≪ S2 means that S1 is evolved to S2, or S2 is an

evolution of S1.

Program Evolution

Definition: A partial program S is a sequence of

commands, denoted by S = [C1, C2, …, Cm],

where each Ci (i = 1, …, m) is a command (a

specification or code).

Definition: Let S1 = [C1, C2, …, Cm] and S2 =

[C1’, C2’, …, Cn’]. Then, S1 is extended to S2,
denoted by S1 ≦ S2, if and only if they satisfy

the condition:

Ci = Ci’ (for i = 1, …, m) and n > m

Start

C1

C2

Start

C1

C2

C3

Current

partial

progra

m

Extended

partial

program

Definition: Let S1 = [C1, C2, …, Cm] and S2 =

[C1’, C2’, …, Cn’]. Then, S1 is clarified to S2,

denoted by S1 П S2, if and only if they satisfy

the condition:

n = m and for some Ci (1 <= i <= m), Ci is

redescribed more clearly by Ci’.

In this case, we also say S2 is a clarification of

S1.

The clarification also defines the human’s

responsibility.

Start

C1

C2

Start

C1’

C2

Current

partial

program

Clarified

partial

program

Definition: Let S1 and S2 be two partial

programs. Then, S1 is evolved to S2, denoted
by S1 ≪ S2, if and only if they satisfy the

condition:

S1 is either extended to S2 or

S1 is clarified to S2.

Definition: Let S1 be a partial program of a

correctly completed program. Then, S1 must

satisfy a set of desired properties denoted by

P_S1.

2.1 Theoretical Foundation
The roles of the computer observer:

1) Software Construction Monitoring (SCM)

1.1) Learning patterns for making faults from

programming (where a fault is a syntactic

expression that violates some property of the

current partial program.)

1.2) Verifying properties of partial programs to

detect potential faults

1.3) Reporting potential faults and the related

information

2) Software Construction Predicting (SCP)

2.1) Self-correction of the mistakes in partial

programs to remove faults

2.2) Predicting program fragments to enhance the

robustness (or other properties, such as safety or

security) of the program

2.3) Predicting program fragments towards

completing the program

2.4) Reporting the predicted program fragments

3) Incremental Program Review (IPR)

3.1) Transforming programs to graphical

representations for comprehension

3.2) Guiding the programmer to review the properly

selected program fragments

3.3) Carrying out knowledge-based peer review

1.1) Learning patterns for making faults

from programming

Analyse the process of editing the

program to determine the patterns for

making faults based on how many times

the same expression or statement is

repeatedly modified.

Example1: assume the decision

if (x > y && y < z) {…}

is modified twice as follows:

x > y || y < z → x > z & y < z → x > y && y < z

Then, the computer will learn the pattern indicating that decisions containing

the logical operator || is likely to contain mistakes.

Example2: assume that each of the three decisions

if (x.age >= 20) { …;}

…

if (x > y && x < z) {…;}

...

while (amount < balance) {…;}

is modified twice during the editing of the program, then the computer will

lean the pattern indicating that the decisions in conditional and iteration

statements are likely to contain faults.

The same principle can be applied to other syntactic phenomena, such as

variable declaration, function calls, assignments, nested statement, and components.

1.2) Verifying properties of partial programs

to detect potential faults

Let S1 be the current partial program. Let P₁,
P₂, ..., Pn be properties S1 must satisfy.

SCM aims to automatically, dynamically check

whether the current partial program S1 satisfies

these properties.

A property may be formed based on the

specification or formed based on some

implementation rules (e.g., avoiding exceptions).

Challenges

◼ How to find and define all the properties P₁,
P₂, ..., Pn that S1 must satisfy?

◼ Given a relevant property Pi (i ∈ {1,2,...,n}),

how can S1 be automatically and efficiently

checked to determine whether it satisfies Pi or

not?

Potential Techniques

For defining properties:

1. Specification-Based property definition

2. Exception-based property definition

For verifying the properties:

1. Specification-based static analysis

2. Predicate-based testing

1.3) Reporting potential faults and

the related information

How to report the detected faults and potential

faults will affect the accuracy and efficiency of

human understanding and the human-machine

interaction.

The issues to address:

(1) Format of the reported message (the

structure of the message)

(2) Presentation style of the reported message

(the notation for expressing the message)

(3) The level of the detail of the fault description

Challenges

(1)How to ensure that all of the reported faults

are real faults for S1 ?

(2)How to ensure that the programmer will

accurately and efficiently understand the

reported faults given in the adopted format,

style, and detail level?

2.1) Self-correction of the mistakes in

partial programs to remove faults

After the programmer types in a line of program,

the SCP system will automatically find some

obvious mistakes and automatically correct

them, respectively. After the correction, the

results should be highlighted to remind the

programmer of the changes.

The items that can be possibly self-corrected:

(1)Variable names

(2)Operators

(3)Function definitions

(4)Statements

(5)Decision and conditions

(6)Access restrictions (private, protected, public)

(7)Others

Possible techniques for self-correction:

(1) Change the syntax of the target

(e.g., F0rmal → Formal)

(2) Add necessary items to the target

(e.g., month >= 1 and month <= 12)

(3) Remove items from the target

(e.g., a < 10 && a < 20 → a < 20)

2.2) Predicting program fragments to enhance

the robustness of the program

The robustness of a program is often concerned with

input from the human-machine interface (e.g., GUI)

and exceptions. The SCP system should automatically

identify those parts and determine whether there is a

need to improve the current partial program. If yes,

then an appropriate program fragment should be

added.

In general, the means for improving the robustness is

exception handling. There might be other ways, such

as adding conditional statements (e.g., a person’s age

must be greater than 0 and less than 150; the amount

for withdrawal from ATM must be great then 0 and less

than a specified limit).

2.3) Predicting program fragments towards

completing the program

Suppose a completed program S is composed

of n commands C₁, C₂, ..., Cn. Abstractly, it is

represented as S = [C₁,C₂,...,Cn].

Let the current partial program be

CV_S = [C1, C2]. Then predicting program

fragments means to make an extension of

CV_S, for example CV_S’ = [C1, C2, C3, C4].

A sequential program usually defines a

mathematical function: given an input, it will

produce an output.

When the current version of the program is

written, the SCP system should automatically

understand what should be written next and

therefore propose a program fragment for

this purpose.

Best Best regards

Possible situations for proposing a program fragment:

(1) Consider the logical expression (decision, condition)

in if-then-else statements in order to ensure that for

every possible situation, the corresponding

processing statements are provided.

Example:

Current statement: if (amount <= balance && amount <=

w_limit && amount > 0){ }

Proposed program fragment:

if (amount <= balance && amount <= w_limit && amount <= 0){

…;}

if (amount <= balance && amount > w_limit && amount > 0){…; }

if (amount > balance && amount <= w_limit && amount > 0){…;}

(2) Consider an iteration statement to ensure

that for every possible exit of the iteration

statement, the corresponding processing

statements are provided.

Example:

current statement: while (p1 && p2 && p3) { …;}

proposed program fragment:

if (!p1) {…;}

if (!p2) {…:}

if (!p3) {…;}

(3) Consider a class to ensure that the class

contains all of the necessary functions (or

methods).

Example:

current class:

class account { string name;

string acc_no;

int balance;

int w_limit;

Deposit(int amount){…;}

}

proposed program fragment:

class account {…; //existing code

string getName(){return name;}

void setName(string na){name = na;}

…

int Withdraw(?){?}

int Inquire(){?}

}

2.4) Reporting the predicted program

fragments

How should the predicated program fragment be

presented to ensure that the human

programmer can accurately and efficiently

understand it for deciding how it can be adopted

in the current version of the program.

The issues to address:

(1) Presentation style of the proposed program

fragment (code, pseudocode, or diagram?)

(2)The level of the detail of the proposed

program fragment.

3.1) Transforming programs to graphical

representations for comprehension

Examples:

(a) Data flow diagrams

(b) Control flow diagrams

(c) Variable dependency graph

3.2) Guiding the programmer to review the

properly selected program fragments

Activities:

(a) Select program fragments for review (e.g.,

where in the newly constructed program parts

needs to be reviewed? Complexity?

Importance?)

(b) Raise questions about the selected

fragments to guide the review and support the

review process

3.3) Carrying out knowledge-based peer

review

Activities:

(a)Build a knowledge base of bug patterns for

programs on computer. Each bug pattern is a

faulty expression, and it can be formed based

on the domain, the specification, the

exceptions, peers, and other sources.

(b)Support the application of the knowledge to

the current partial program.

Framework for HMPP

Current version of
software

Property-related
knowledge base

Syntactical Analysis

Information of the
current software

Form Specific
Properties

Check Properties

Specific properties

Fault report

Predict Contents

Development method
knowledge

Domain knowledge

Predicted
segments

Next version of
software

Adopt segments

3. Knowledge Classification

Get back to the basics:

What are data? (1, 7, 8)

What is information? (one-hour ?, seven-hour ?,

eight-hour ?)

What is knowledge? (7 + 1 > 8)

Knowledge for HMPP:

(1) Domain knowledge (e.g., ATM, Railway card, Air ticket

reservation, Railway control system)

(2) Method knowledge (e.g., rules and procedures suggested by

a specific programming method or software development

method)

(3) Property-related knowledge (e.g., various properties of

variables, expressions, statements, modules)

(4) Fault-related knowledge (e.g., common faults, specific faults)

(5) Standard-related knowledge (e.g., the depth of nested

conditional statements should be less than 5; variable

declarations should be given together before the statements

in the body of a function)

(6) Language-related knowledge (e.g., a function can only return

one value; no multiple inheritances of class is allowed)

(7) Self-correction knowledge (e.g., class Derived::

public Base should be corrected to: class Derived:

public Base)

(8) Robustness-related knowledge (e.g., input value

should be converted into a consistent type; a person’s

age should be between 0 and 150 or 200)

(9) Extension knowledge (e.g., after the while (p1 || p2 ||

p3) { …;}, there should be appropriate program

statements to deal with the situations when each of the

condition in the loop decision is false)

(10) Others

4. HMPP for Agile-SOFL

(1) When a specific HMPP system is built, it is

always supposed to support a specific software

construction or programming method.

(2) Building a HMPP system to support multiple

programming methods is possible, but its

efficiency and effectiveness would be

considerably damaged.

(3) Building a domain-specific and method-

specific HMPP system would be the best way to

gain efficiency and effectiveness in supporting

programming.

Agile-SOFL: a specification-based

programming agile method

Characteristics:

1. A three-step approach to building comprehensible hybrid

specification for analyzing requirements and defining what

to be done by the potential system.

2. Testing-Based Formal Verification (TBFV) for program

verification.

3. Incremental implementation together with the application

of TBFV in small cycles

The Agile-SOFL Three-Step Specification

Software

defects and

errors

Principle of Agile-SOFL

HMPP for Agile-SOFL
SOFL = Structured Object-Oriented Formal Language

The main functions to support:

(1)Construction of hybrid specifications

(combination of semi-formal specification,

GUI design, and formal specification)

(2)Module-based incremental programming

(3)Program testing and debugging

5. Challenges
➢ Identification and definition of all the necessary

properties for partial programs.

➢ Theory and techniques for learning frequently

occurred faults from programming activities (e.g.,

editing, testing, maintenance)

➢ Identification and definition of domain knowledge,

programming method knowledge, and knowledge for

predicting program fragments.

➢Knowledge representation techniques for efficiently

searching and applying the knowledge in the

knowledge base.

➢ Theory and techniques for efficient and effective

interactions between human and machine.

6. Conclusions
❑ Human-Machine Pair Programming (HMPP) is a

promising technology for software development, but

the research on it is just beginning.

❑ HMPP combines AI with software development

technologies and will significantly improve software

productivity and quality, but it will not completely

replace humans in software development.

❑ HMPP can only be realized with high-quality tool

support and building the tool support needs to rely on

a solid theoretical foundation. Formal methods can

be a good means to help study the theoretical

foundation.

7. Future Work

(1) Tackle the challenging issues given previously.

(2) Build intelligent tools to support HMPP.

(3) Apply HMPP to software engineering in practice.

Related publications
(1) Shaoying Liu and Shin Nakajima, “Automatic Test Case and Test Oracle

Generation based on Functional Scenarios in Formal Specifications for

Conformance Testing”, IEEE Transactions on Software Engineering,

DOI: 10.1109/TSE.2020.2999884, 2020.

(2) Shaoying Liu, “A Three-Step Hybrid Specification Approach to Error

Prevention”, Journal of Systems and Software, Elsevier, Vol. 178, 110975,

2021, DOI: https://doi.org/10.1016/j.jss.2021.110975.

(3) Shaoying Liu, “Software Construction Monitoring and Predicting for

Human-Machine Pair Programming”, Proceedings of 8th International

Workshop on SOFL +MSVL 2018 for Reliability and Security, LNCS 11392,

Springer, Gold Coast, Australia, Nov. 16, 2018, pp. 3-20.

(4) Shaoying Liu, “Agile Formal Engineering Method for Software Productivity

and Reliability”, The 14th Central and Eastern European Software

Engineering Conference Russia (CEE-SECR 2018), ACM press, Moscow,

Russia Federation, Oct. 12-13, 2018, pp. 64-69.

(5) Siyuan Li and Shaoying Liu, “A Software Tool to Support Scenario-Based

Formal Specification for Error Prevention”, The 7th International Conference

on SOFL+MSVL (SOFL+MSVL 2017), LNCS 10795, Springer, Xi’an, China,

Nov. 16, 2017, pp. 187-199.

Thank you !

