
Through the Looking Glass of Immaterial Labor
Yunwen Ye1 Kumiyo Nakakoji1 Yasuhiro Yamamoto2 Kouichi Kishida1

1Key Technology Laboratory, SRA Inc.,
2-32-8 Minami-Ikebukuro

Toshima, Tokyo 171-8513, Japan
+81-3-5979-2688

2Precision and Intelligence Laboratories
Tokyo Institute of Technology

4259 Nagatsuda, Midori, Yokohama, 226-8503, Japan
+81-45-924-5054

ye@sra.co.jp kumiyo@sra.co.jp yxy@acm.org K2@sra.co.jp

ABSTRACT
Immaterial labor, which is a philosophical concept established by
Maurizio Lazzarato and others for understanding the post-
Fordism industry, refers to the process of producing the
informational and cultural contents of a commodity. Through
examining software development and software-intensive society
with the lens of immaterial labor, this paper aims to make a first
step of establishing a new theoretical framework to understand (1)
how to evaluate values of software systems, (2) how such values
are created, and (3) how software development should be
organized to create such values.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies. H.1.1
[Information Systems]: Systems and Information Theory –
Value of Information.

General Terms
Theory, Economics

Keywords
Immaterial labor, software-intensive society, valuation of
software systems

1. INTRODUCTION
Makoto Hattori, the founder and director of Software Industry
Association in Japan, made the following remark in 1973 [7]:

“Most people view software development as the work of
making programs, just like making products in a factory. As
long as this view persists, the value of software will only be
equated to the sum of labors invested in the production of the
software. How we appreciate and evaluate the values, which
were brought to life by strong motives, inventive
resourcefulness, and thoughtful designs that software
developers put into the software system, will determine the
future of our industry.” (originally in Japanese; translated into
English by the authors)

About forty years later, the remark unfortunately remains true,
and becomes even more urgent as software has permeated into

every corner of our life.
The phrase software engineering was “deliberately chosen as
being provocative,” so that the phrase would stimulate
conversation and dialogue [10]. After 40 years, instead of viewing
the phrase stimulating and provocative, many of us have accepted
a view that software is something to be engineered. We have
looked up to established engineering fields to borrow concepts,
theories and ideas to guide the understanding and development of
the software trade. Much of research in software engineering is
strongly influenced by the efficiency of Fordism, the modern
industrial production that is built upon the Taylorist criteria:
serialization of work, coordination of work, and insignificance of
individual difference.
The engineering framework has demonstrated success as long as
software to produce is something to solve a problem, for instance,
in more quickly calculating a trajectory of a projectile, in more
accurately simulating air dynamics, or in more efficiently
searching for a phrase within a large body of text. However, more
and more software systems we create today are no longer solving
problems; rather, they are cultural and knowledge products that
redefine the way we work, learn, communicate, and entertain.
When such personal, cultural and social elements become
essential in software systems we produce, the engineering
framework lacks something very fundamental in software
development. It is time for us to examine how software systems
are produced and consumed in a very different way than other
engineered commodities.
This paper uses the concept of immaterial labor, which is a
philosophical concept established by Maurizio Lazzarato [8] and
others [6, 12] for explaining the post-Fordism, to better
understand the development and use of software products. The
concept was first proposed by Maurizio Lazzarato who has long
studied the mode of production, socialization and appreciation of
culture products such as books, fine arts, audio-visual products,
fashions, and other cultural activities [9].
Through examining software development and software-intensive
society with the lens of immaterial labor, this paper aims to make
a first step of establishing a new theoretical framework to
understand (1) how to evaluate values of software systems, (2)
how such values are created, and (3) how software development
should be organized to create such values.

2. OVERVIEW OF IMMATERIAL LABOR
When cultural products (such as music records) become
commodities, people tend to think that cultural products are
another type of industrial commodities, which are resulted from
subjecting intellectual labor to the norms of capitalist production.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Lazzarato [8] argues that the other way around is happening: the
mode of production, socialization and appreciation of cultural and
knowledge has gradually seeped into the general economy,
transforming industrial production processes into forms of
immaterial labor in which “information and communication play
an essential role in each stage of the process of production.”

The activities performed during immaterial labor are not new, and
have existed all the time. However, they were “once the
privileged domain of the bourgeoisie” [8], and were not normally
considered as labor because they were supported by categorically
different criteria and principles [12]. What makes it important
now is that more and more workers are engaged in the form of
immaterial labor due to the advance of computer and software
technology. Immaterial labor is not only becoming a dominant
sector that replaces the industrial sector, but also becoming a
predominant feature of all kinds of labor, transforming old
industrial production labor into immaterial labor.

The expansion of working force that engages in immaterial labor
erases the sharp dichotomy between design and making, creativity
and routine work, production and consumption, and labor and
leisure. As a result, it produces profound implications for the
cycles of value creation, the education and qualities of workers,
and the organization and management of workers.

2.1 Consumption and Production
Immaterial labor reverses the relationship between production and
consumption: production creates needs, and consumption creates
value. The use of the product materializes some needs that may
not have existed in the first place. This recognition in turn
produces more needs.
Immaterial labor does not produce for the satisfaction of known
needs of consumption; instead, it creates new consumption needs.
In a world of abundance, most post-modern production (such as
music and fashion) is geared toward immaterial (social and
cultural) wants, stimulated by producers, rather than material
needs. The value created through immaterial labor tends to be in
terms of emotional, interpretational, and communicational
experiences.
The immaterial labor will have an economic value only when the
ideas and intentions behind the product are clearly communicated
to and accepted by the consumers. As Simmel points out, only
until individuals are sufficiently acquainted with objects, they are
able to assign their respective values [11]. Socialization is the
precondition for the creation of a product value because it gives
“a place in life” of the society.

2.2 Competence of Workers
The value and quality of products produced through immaterial
labor depend on the knowledge and the innovation of its entire
workforce. This redefines the competences of work forces in the
following three aspects.
Intellectual skills and subjectivity. Cultural and information
values of a product cannot be created by the mere execution of
predefined procedures; instead it depends on whether workers are
able to innovate by identifying problems and creating new
solutions. For any given problems at each stage of production,
there are often many alternative solutions, and workers are
responsible to make choices based on their own criteria. This
innovation and decision-making process is mainly a factor of the

knowledge, taste, and personality of the worker. Intellectual skills
and subjectivity, which used to be individual and private, now
become the main means of production and the direct force for
creating values of a product.
Communicative skills. “Immaterial labor requires cooperation and
collective coordination” [8]. The quality of work is not only
defined by the worker’s individual professional capacities and
intellectual skills, but also by his or her capabilities of initiating
and managing productive cooperation with others. In addition to
communicating with his or her peers, the worker also needs to be
able to clearly communicate the value of the product with
customers as discussed above.
Autonomy: uncertainty and motivation. Workers of immaterial
labor are responsible for their own control, and to make plans and
follow through. Immaterial labor cannot be divided into simple
and repetitive elements. It is hardly possible for a supervisor to
intervene directly how the work should be done. Autonomy
requires workers have the capability of dealing with unpredictable
situations and to be self-motivated in times of uncertainty.

2.3 Organizing Immaterial Labor
Taylorist principles of scientific management, which are based on
the concept of planning and reducing work to simple elements to
achieve efficiency, standardization and specialization, are not
applicable for immaterial labor. Managers need to get out of the
mentality of foreman that monitors and supervises their members.
Instead, managers should work more like a facilitator, recognizing
that “the autonomy and freedom of labor as the only possible
form of cooperation in production [8].”
The systems theory school of organizational studies views an
organization as a system consisting of inter-related and mutually
dependent individual professionals who join the organization only
when he or she feels the reward is fair to his or her contribution.
Lazzarato calls for new approaches to organizing immaterial labor
[8]. He writes: “labor and direct subjugation (to organization) no
longer constitute the principal form of contractual relationship
between capitalist and worker. A polymorphous self-employed
autonomous work has emerged as a dominant form”. Various size
of productive unit could be formed for specific projects, and exist
only for the duration of that job. When job is done, workers are
returned to the “basin of immaterial labor.”

3. IMPLICATIONS FOR SOFTWARE
DEVELOPMENT AND RESEARCH
The philosophical framework of immaterial labor is relevant to
software development and software industry in two respects. First,
software development can be viewed as a kind of immaterial labor.
Software is not made of physical material, and most of software
systems we develop today redefine the way we work, learn,
communicate and entertain, the values of which come into
existence only after the users experience them.
The second respect, which may not be as obvious as the first one,
is that software systems are the driving force that transforms
material labors into immaterial labors. It is the use and
consumption of software systems that characterize many labors as
immaterial labors because software pushes labor activities “to the
side of the production instead of being its chief actor” [12]. A
large portion of employees of automobile companies and
consumer electric companies are now engaged not in physical

production lines but in interacting with software systems.
Software developers are not only developing tools for users, they
are also changing social and productive forms for those users.

3.1 Valuation of Software Systems
The value of software, as a result of immaterial labor, is created,
realized, and increased by consumers. The activity of immaterial
labor that goes into the production of the software system begins
to bear an economical value only when it is utilized by consumers.
Requirements are no longer something to be captured and
analyzed; they are something to be innovated and designed.
Software is not created to satisfy some needs that are there to be
uncovered, or to model a reality computationally; in contrast,
software materializes some form of vague or even non-existing
needs and reshapes the reality of its users. It is not the needs that
lead to production; it is the production that leads to needs.
The constantly changing requirements of users are not problems
that software engineering research should aim to resolve; rather,
they are the very basis for the value of software systems, and
therefore represent the opportunities that should be explored and
nurtured. The relative new concept of “forever beta” may be a
mere reflection of the very nature of the type of software systems
developed through immaterial labor.
As described in 2.1, socialization of software is the precondition
for the recognition of software value. This explains the increasing
new practice of software sales: releasing software with free trial
times. Free trials become essential means for software developers
to communicate the value of the software. Once customers
recognize the value by using the product through free trials, they
may be more willing to pay for their future experience. Similarly,
open source software becomes the means for the software
industry as whole to communicate to the society the value of
software, and to generate new needs for software systems.
Software systems are not isolated products that we deliver over
the fence to customers. Instead, they serve as the media to bear a
social relationship between those who produce software and those
who consume software. The sustained existence and success of
the software industry relies very much on the new needs that
continuously come from customers’ usage and experience of the
systems, as well as at our capability of innovation to generate and
stimulate new needs.

3.2 Development of Software Systems
When viewing software as results of immaterial labor, it is easy to
realize that software development is not about building
computation models or representations of reality. Software is part
of the reality, and software creation and consumption reshapes the
reality through the creation of new modes of production while
enabling new experience.
New types of software development skills and competence are
called for. Lazzarato and Beller suggest that aesthetic mode of
production is a starting point [9] [1]. As in all aesthetic production,
the assurance of non-functional quality comes from the practice of
software developers, determined by their competence and
motivation of making tweaks driven by the “love of beauty and
greediness for the exquisite [9].”
A few relatively new practices address such aesthetic modes of
software development. The participatory design methodology and
socio-technical theory have focused on realizing the quality-of-

use that is only determined by users. The interaction design and
experience design focus on the design of how users interact with a
system while identifying necessary functionality for the system.
This is in contrast with the traditional user interface design
approach where an interface is inserted for the pre-determined
functionality of the system.
We think these emerging design practices need to be weaved with
the existing software engineering practices. A currently
predominant view of software engineering research states that
while software engineering focuses on building a software system
correctly, what we lack is a way to build a correct system.
Through the looking glass of the immaterial labor, however, there
are no correct systems. The value is only created through using
them. Software systems are logical artifacts. Building a software
system correctly remains essential. Most of software engineering
and programming practices today are still relevant to the valuation
of software as a product of immaterial labor. Building software
remains resource-limited and time-constrained, full of conflicting
goals along multiple dimensions.
Research and education of software development is no longer
limited to exhortation of the absolute good of one particular
method, notation, or activity, but providing guidance and
strategies that help software developer deal with uncertainties and
make satisficing decisions during conflicts.
In reexamining software development from the perspective of
immaterial labor, software development constitutes a design task.
The design task has the duality: the design of a software system as
a product (i.e., the traditional software design), and the design of
the value that the software system would communicate with those
who consume it. It is not that one precedes the other. It is the two
faces of the one thing. The challenge of software development in
the realm of immaterial labor is how to design the duality.

3.3 Organizing Software Development
In organizing software development as immaterial labor, how to
sustain software developers’ intrinsic motivation becomes an
important research question. The quality of software systems
hinges on the individual selection of alternatives, and the fusion
of subjectivity and tastes. Hall et al. have identified “challenge,
change, benefit, problem solving, team work, science, experiment
and development practices” as motivators for software developers
[5].
Hock attributed the success of the first VISA credit card clearing
system to the motivation of taking pride in their work by project
member: “Individuality, self-worth, ingenuity, and creativity
flourished; and as they did, so did the sense of belonging to
something larger than self, something beyond immediate gain and
monetary gratification. [2]”
Motivation becomes essential not only for technical exploration,
but also for social cooperation. While ad hoc coordination needs
arise all the time, project members need to be sensitive to each
other’s information needs and to be motivated to help each other
for collaboration to proceed timely and smoothly [13].
The notion of immaterial labor tries to differentiate two
philosophic concepts of “many”: people and multitude. The
concept of people stresses the commonality and identity defined
by the organization (be it state or corporation), and asks its
member to converge to that organizational identity. The concept

of multitude takes commonality defined by general intellect as
given and stresses the individuality.
Projecting these two concepts to software development, people
and multitude correspond to the Roman model and the Greek
model compared by Robert Glass [4]. In the Roman model,
software developers identify themselves with the group,
sacrificing their individuality for the good and goal of the group.
In the Greek model, software developers worked as individuals
and keep their individuality (Table 1). The people concept
corresponds to the Roman model, where managers manage
software developers by interchangeable roles. The multitude
concept corresponds to the Greek model, where managers view
software developers as individuals.

Table 1: Roman and Greek Models of Organization

Models Roman Greek
Object Organizes people Organizes things

Membership Formal Informal

Focus Manages the projects Writes the programs

Motivation Motivated by group
goals

Motivated by the
problem at hand

Working style Works in large
organizations

Works alone or in a
small group

Politic Imperial Democratic

Rewarding Class based on function Class based on merits

Communication Planned Ad hoc

Activities Plan things or go to
meetings

Do things

The way that open source software is developed is similar to what
Lazzarrato suggested as a new form and organization for the
production of immaterial labor, looking at project members as
multitude. In an OSS project, each project member identifies and
solves problems on her own. Coordination is bottom-up, initiated
and managed by members, not by managers. Every OSS
developer, to some extent, is an entrepreneur. Variations of OSS-
like projects could be adopted in corporation settings [3]. Agile
development methods also reflect the view of treating project
members as multitude, and managing them as individuals instead
of roles.
Such recent trends in organizing software development projects
tend to be regarded as new styles of software development.
However, by viewing software development as immaterial labor,
we can see that such trends are the reflection of a better
understanding of the essential features of software and the change
of the nature of the software systems that are developed.

4. CONCLUDING REMARKS
If we look at the genre of business software systems, they are
coming out of the first generation of productivity tools and
heading into the next generation of tools for the production and
reproduction of subjectivity embedded in immaterial labor in a
software-intensive society. This is something similar to the
change of the clothing industry that transform itself from covers
that keep us warm to fashion as manifest of individuality and
subjectivity. Business software of next generation is no longer for

productivity alone, but for new ways of doing businesses that
separate them from other competitors. Business innovations are
now driven by software innovations.
Software systems are not thought products like arts; they must
have utilities for their users. Software systems can be viewed as
real abstraction. They are like money. Money embodies, and
makes it possible to have the physical experience of, the abstract
thought of “value equivalency.” Similarly, software systems
embody and give experiential forms to new needs and concepts.
Immaterial labor points out the limitation of the Taylorist model,
and argues that modern industry factories are increasingly
becoming similar to the production of cultural products, such as
fashion, music records, and software. The mode of producing
software systems is becoming the mode of post-Fordism
production, not the other way around. It is the time for us to stop
looking up to the Ford model, stop using the factory metaphor for
software development; it is the time for us to lead and define
modes of production for the software-intensive society.

5. REFERENCES
[1] Beller, J., The cinematic mode of production: Attention

economy and the society of the spectacle. Hanover, NH:
Dartmouth College Press, 2006.

[2] Cockburn, A., "The end of software engineering and the start
of economic-cooperative gaming," Computer Science and
Information Systems, vol. 1, 2004.

[3] Dinkelacker, J., Garg, P.K., Miller, R., and Nelson, D.,
"Progressive open source," in Proceedings of 24th
International Conference on Software Engineering
(ICSE'02). Orlando, FL.: ACM Press, 2002, pp. 177-186.

[4] Glass, R.L., "Greece vs. Rome: Two very different software
cultures," IEEE Software, vol. 2006, pp. 111-112, 2006.

[5] Hall, T., Sharp, H., Beecham, S., Baddoo, N., and Robinson,
H., "What do we know about developer motivation?" IEEE
Software, vol. 2008, pp. 92-94, 2008.

[6] Hardt, M. and Negri, A., Empire. Cambridge, MA: Harvard
University Press, 2001.

[7] Hattori, M., "SIA report," in Japan IT chronicle, 1973.
[8] Lazzarato, M., "Immaterial labour," in Radical thought in

italy: A potential politics, P. Virno and M. Hardt, Eds.
Minneapolis, MN: University of Minnesota Press, 1996, pp.
133-147.

[9] Lazzarato, M., "European cultural tradition and the new
forms of production and circulation of knowledge," 2004.

[10] Naur, P. and Randall, B., "Software engineering: A report on
a conference sponsored by the nato science committee,"
NATO, 1969.

[11] Simmel, G., "The metropolis and mental life," in The
sociology of georg simmel, K. Wolff, Ed.: The Free Press,
1950.

[12] Virno, P., A grammar of the multitude. Cambridge, MA: The
MIT Press, 2004.

[13] Ye, Y., Yamamoto, Y., and Nakakoji, K., "A socio-technical
framework for supporting programmers," in Proceedings of
2007 ACM Symposium on Foundations of Software
Engineering (fse2007), 2007, pp. 351-360.

