Metamor phic Testing and Its Applications *

Zhi Quan Zhou'T D.H.Huang”, T.H.Tse?
Zongyuan Yang® Haitao Huang® and T.Y.Chen'

TSchool of Information Technology

Swinburne University of Technology

Hawthorn, Victoria 3122, Australia
Email: {zhzhou, dhuang, tch¢@it.swin.edu.au

*Department of Computer Science
The University of Hong Kong
Pokfulam Road, Hong Kong
Email: thtse@hku.hk

8 Department of Computer Science
East China Normal University
3663 Zhongshan(N) Road
Shanghai 200062 P. R. China
Email: {yzyuan, hthuang@cs.ecnu.edu.cn

ABSTRACT to check the correctness of their programs, although tgstin
An “oracle” in software testing is a procedure by which teste cannot prove the absence of errors in most situations [2, 14]
can decide whether the output of the program under test-

ing is correct. In some situations, however, the oracle ts no Let b ol ting functi d
available or too difficult to apply. This is known as the “or- et p(x) be a program implementing functioh(x) on do-

acle problem”. In other situations, the oracle is often the n}atln ? To te_srt irllstprzzgram, t[]e testelrjruprs;)n T e;slet
human tester who checks the testing result manually. The'(I)'h es tca?est - {tl’ 2 A n} Cth : Vr‘]’ elieg ainst
manual prediction and verification of program output gseatl € outputn(ta), p(ta), P(tn) are then checked agains

- : ; the expected resultb(tl),. f Etz), ..., f(tn), respectively. If
the eff th t of testing.
decreases the efficiency and increases the cost of testing b(t) = f(t), thent, is called asuccessfulest case: ipi(t) 2

A metamorphic testing method has been proposed to test prod (ti), thent; is called &failure-causingiest case. The mecha-
grams without the involvement of an oracle. It employs prop- nism by which the tester can decide whetpér) = f(t;) for

erties of the target function, known as metamorphic retetio i =1, 2, ..., nis known as theracle In software testing

to generate follow-up test cases and verify the outputs-auto literature, it is usually assumed that the oracle is avhilab
matically. In this article, we shall present the concepts; p and, hence, the mainstream of the researches has concen-

There is aroracle assumptioin the theory of testing [18].

cedures, and applications of metamorphic testing. trated on the development tést case selection strategjes
that is, the approaches for selectitig that have a higher

Keywords chance of causing a failure.

Metamorphic testing, metamorphic relation, oracle, sssce o _)

ful test case, automated testing, multiple executions. In some situations, however, the oracle is not available or
too expensive to apply. This is known as thieacle prob-

INTRODUCTION lem[18]. For example, the outputs of programs conducting

The verification of program correctness plays a criticaérol complicated computations, such as numerical integrations
in software development. In the past decades, it is shownare difficult to verify; In multiple precision arithmetiché
that the use of formal verification, i.e., program proving, t operands involved are very large numbers and, hence, the re-
real-life applications has been very limited [12] owinghet sults are very expensive to check; When testing a compiler,
difficulties of proofs and automation. Software testing, [2] it is not easy to verify whether the generated object code is
therefore, remains the most popular means for practitioner equivalent to the source code; When testing object-oriented
programs, it is very difficult to decide whether two objects
vl Tgis reseﬁrgh is S_TJpFlonr_tetili\rll pngt) gl?/’4a5 SLS;OVEFmF: Omh are equivalent. Other examples include testing programs pe
Gr?;i?s Ce(ff:(gﬁ o ﬁg:;'léor:gj(e;mjgc't No. HKU 71)435’45’ ar;;‘i?rc; forming simulations, conducting combinatorial calcuas,
the University of Hong Kong. drawing graphs to the monitor, etc. On the other hand, when
T Corresponding author. the oracle is available, if it is a human tester, the manua pr

dictions and comparisons of the test results are often timegram can be further verified against some necessary prop-
consuming and error prone [13, 15]. As a matter of fact, the erties. MT is useful because the vast majority of test cases
oracle problem has been “one of the most difficult tasks in are successful ones — although they have not revealed any
software testing” [15]. failure, these test cases do carry useful information igdor

in conventional testing.
Another important topic is how to effectively utilize thecsu

cessful test cases. This is because, even when the oracle M T generates follow-up test cases by making reference to
available, testing is still very expensive and takes a major “metamorphic relations” (MR). For program, an MR is a
part in the total development cost [12] because test case deproperty of its target functiorf. The unique character of
sign and implementation are always labor intensive. Hence,MR s that it involvesmultiple executions. For example, if

it is important to make the best of each test case. Having saidf (X) = €, then the propertg? x €2 = 1 is a typical MR.
that, it must be pointed out that the majority of the test sase Hence, for a successful test case, ay 0.3, metamorphic
are successful test cases that do not reveal any failurenin ¢ testing generates its follow-up test case- —0.3 and then
ventional testing, these test cases are considered useléss runs the program again @h Finally, the relation of the two
hence, discarded [17] or merely kept for regression testingoutputs are checked against the expected relghi@g) *
later. The theory of fault-based testing [16] is a breakigto ~ p(—0.3) = 1. * If this identity does not hold, then a failure
because it employs successful test cases to prove the absenés immediately detected. Like all the other testing methods
of certain types of faults. Unfortunately, most testingtec however, the conditions checked by MT are necessary, but
niques are not fault-based and most test cases do not revednay not be sufficient for program correctness.

any failure. As a result, useful information carried in thos

successful test cases remains unexploited. Because MT checks the relations among several executions

rather than the correctness of individual outputs, MT does

A metamorphic testing methdT) has been proposed by ot need an oracle and can be fully automated. This method-
Chen et al. [5] to employ successful test cases and allevi-ology has also been applied to fault-based testing without
ate the oracle problem. Based on the successful test case§racles [8]. Further study has also been conducted in [11],
follow-up test cases can be generated by making reference tavhere an experimental MT framework is constructed.
metamorphic relationghat is, relations amongultiple ex-
ecutions of the target program. The generation of the fellow
up test cases and verification of the test results do not re-
quire an oracle. In this article, we present the basic cascep
of metamorphic testing and introduce a range of its applica-
tions.

In fact, identity relations likee* x e = 1 have long been
used in practice to test programs, especially in the area of
numerical computing (such as [9]). Apart from conventional
testing, identity relations have also been used for falgtrto
ance in run time [1]. The techniquesmiogram checkef3]

and self-testing / correcting4] also intensively involve the
use of identity relations of the target function. Neverthe-
BASIC CONCEPTSOF M ETAM ORPHI C.TESTI NG less, there are notable differences between these methdds a
Metamorphic testing (MT) [5] is a technique to generate metamorphic testing. Firstly, MT can be used in conjunction
follow-up test cases based on existing test cases that havgyith other test case selection strategies, including biattke

not revealed any failure. MT should be applied in conjunc- anq white-box testing strategies. When the initial test ast h
tion with other test case selection strategies that geméiat ot revealed any failure, MT can be used to further exploit
initial set of test cases. Let us consider a progmim- the yseful information carried in the successful test cases
plementing functionf on domainD. Let S be the test case generate follow-up accompanying test sets so that the pro-
selection strategy adopted by the tester, such as data flowyram can be verified further against necessary properties ef

testing or branch coverage. According3pa test sefl = ficiently and automatically. Secondly, metamorphic relasi
{ti, &2, ..., t} C D, wheren>1, can be generated. Run- are not limited to identity relations. It includes ineqtiat,
ning the program on T vyields the outputs gypsumption relations, and convergence properties to aame
p(t1), p(t2), ..., p(ta). When there is an oracle, these test g,

results can be verified againsft;), f(t2), ..., f(tn); oth-

erwise the tester may still have some way to identify some APPLICATION OF MT TO NUMERICAL PROBLEMS
outcomes that are obviously wrong. For example, an exe-When testing numerical programs whose outputs are not easy
cution that runs too long can be considered a failure; when ato verify, a frequently adopted approach is to use special or
trigonometric function computing caseturns a value greater simple values as inputs [18]. For example, when testing a
than 1, a failure can also be found immediately [18]. When a program computing the sine function, special values such as
failure has been detected, testing can stop and the progran, r/4, 11/2, etc., are always standard test cases. These spe-
will be debugged; otherwis& is a set of successful test cial or simple inputs, however, are not enough in building
cases. In the latter case, MT can be applied to automaticallypeople’s confidence in the correctness of their programs on
generate follow-up test cas@$ = {t], t;, ..., t;} € D
based on the initial successful test 3etso that the pro- LFor floating point computation, some rounding error will beakd.

wrt both thex- andy-axes, respectively. The test result is that

none of the above special values could detect a failure.

0—0—0 o000
Now let us verify the program using metamorphic testing

0—0—0 000 method. The convergence property of the solutions can be
identified as a metamorphic relation [6]. For any given point

O O O O O O .

Yy v Y1y 1Y p, let Tg,(p) denote its temperature calculated by the pro-
gram using a mesh gri;. If we useG;, Gj, and G, to
denote any mesh grids, then the following metamorphic rela-

G, G, tion can be identified [6]:
G C GJ' C Gk —
Figure 1. Metamorphic test cases Tg; (p) < min{Tg, (p), T, (P) } or

TGi (p) > maX{TGj (p)aTGk(p)}

more complex and random inputs. We have done experiment_l_h is th q . his MR. Th
in [7], and found cases where errors could not be detected by ft(;programglst .e? teste agalnstht IS b) %temp%ratures
special values. When special-value testing is combined with©' (€ Same < pointpy, Pz, ..., Po Nave been observed us-

metamorphic testing, on the other hand, more subtle faultsgg rlr:1esh gridilsl,F(_Bg, 1 ﬁ5' wheC;eGl g (ﬁz g -
can be revealed [7]. For example, a progra(r) for sine 5. FOr example, Figure 1 s OV, Gy, and the 9 points.
function could compute correctly on a test cage How- When we check the differences between the computed re-

ever, with a follow-up test case generated based on the MRSUItS against the MR a failure can be detected easily as the
sin(x+ 1) = —sin(x), a failure will be immediately detected expected inequality is violated.

whenp(xo +T10) # —p(Xo)- APPLICATION OF MT TO NON-NUMERICAL PROB-

As discussed earlier, metamorphic relations are not lohtite LEMS

identity relations. We would like to cite one of our examples Metamorphic testing is not limited to numerical programs
in [6] to illustrate how to use the convergence property $b te only. In fact, metamorphic relations can be identified in al-
programs that solve partial differential equations. Weaise MoStevery area. In this section, we shall give some but a few
program adapted from [10] that solves the following thermo- examples to illustrate how to employ MT in non-numerical
dynamic problem: For an insulated plate in rectangularehap aréas.

with homogeneous boundary temperatures along each edgeG
we want to know the temperature of each point on the plate
after the heat potential has reached stability.

raph Theory

A lot of graph theory problems are combinatorial problems.
As a result, it is very expensive to verify the outputs when
To solve this problem, the program uses the “alternating di- the input graph is nontrivial.

rection implicit” method to solve the Laplace equation with
Dirichlet boundary conditions. We created a mutant of the
original program by replacing the correct statement

Let us take the Shortest Path problem in an undirected graph
as an example. When the test case is a nontrivial graph
like that shown in Figure 2, there is no oracle efficiently

if (fabs (uMat[i][j] - vMat[j][i] > larg) applicable to verify whether the returned &g, all short-
larg = fabs (uMat[i][j] - vMat[j][i]); est paths betweeA and B found by the program, are in-
deed the shortest ones or whether this set is complete, where
with Se={P;, P, ..., P} andn> 1.
if (fabs (uMat(iJ[j] - uMat][jJ[i] > larg) In this situation, MT can help by checking the program adains
larg = fabs (uMat[i][j] - vMat][j][i]); selected MRs. A popular property that can be identified for

. .) graph theory problems is permutation. Gfis the first test
The above fault is quite subtle, and there is no oracle 10 testcase then 6B be a permutation aB. Running the program

this program. The mutant program gives identical outputs again onG’ should produce the same output as produced on
as the correct program when running orx 3 and 7x 7 G

mesh grids. Both programs also return very close results on

15x 15 mesh grids. In addition, we have also tested the pro-Another MR can be identified as follows: Randomly select
gram on the following special inputs: (1) All the four edges an elemen® from Syg. Hence R, is supposed to be one of
have an equal temperature; (2) Assign equal length to all thethe shortest paths fromto B. Randomly select a vertexin
edges and use symmetric boundary conditions. It is thexefor pathR. Then, run the program to get the shortest paths from
expected that the distribution of the temperatures shoeld b A to X and fromX to B, respectively. Suppose the outputs
symmetric as well; (3) Use symmetric boundary conditions are Sax and Sxg, respectively. One of the expected MRs is

G0 L.

=
e
Figure 2: A nontrivial graph (Weights of edges are p Q

omitted) V

that, for any pathQ € Sax and any pattQ)) € S¢g, the con- \
catenation of) andQ’ must be an element iBg. ‘

Computer Graphics
When the outputs of a program involve a large amount of

data, they are expensive to verify. For example, computer Figure 3: Computer graphics
graphics software generates graphics and prints them on the
screen. It is, however, practically impossible for thedest d=d*b:

to manually check whether each and every pixel is displayed
properly. In this situation, a practical approach is that af
ter checking the correctness of certain amount of indiidua

outputs, we apply MT to verify all the outputs in a more cost-)))
effective way as follows. Even if we do not know whether the output object code is

correct, we can still identify metamorphic relations td tee
Figure 3 illustrates a graph generated by a realistic-geaph compiler. As a simple example, we can find that statement 2
generation software. Note that this figure is simplified for and statements (3, 4) are independent of each other. Hence,
illustration purpose only. For the tester, it is not easydo v we can exchange their sequence to construct a follow-up test
ify whether all the pixels in the screen are displayed priyper case:
because the generation of realistic graphics involves com-
plicated computation and there is a huge amount of pixels. inta, b, c,d:
Nevertheless, some metamorphic relations can be identified | read(a, b):
For example, if the position of the light source changesythe 5 d = 100
the brightness of all the points that become closer to tire lig 4 d=d*b:
source will increase according to a certain formula; sirtyla 4
all the points that become farther will become darker. This
is an easy approach to check all the displayed pixels quickly
and automatically. Following this way, many other metamor-
phic relations can be identified as well.

c=a+1l,

For the above source code, the parallelizing compipeshould
Compilers detect identical parallelism as for the first one, and thistza
Testing Comp"ers is tough_ This is because the equiva|enceveriﬁed much more eaSin than the correctness of the ObjeCt
between the source code and the object code is difficult tocode.

verify. In this subsection, we give an example to illustrate

:) In ive Softwar
how to use MT to alleviate this problem. teractive Software

For interactive software, the program inputs can be a serial
Supposepis a parallelizing compiler. Suppose we have the Of user actions rather than static data. For example, when
following source code as a test case: testing an Internet browser, the test cases can be HTML files
and consecutive user actions as follows: Enter URIClick
“Item 1" — Click “Refresh”— Click “Back” — Select menu

inta, b, ¢, d; “File” — Select menu “Print— Click “OK” ...
1 read(a, b);
2 c=a+1; Metamorphic relations can be identified when testing irtera

3 d =100; tive software. In this situation, an MR is a relation amorfg di

Select prompt language

v

Enter user name

Enter password

No

Tried 3
times?

Yes

Which key
is pressed?

Provide
service 2

Provide
service 1

Say “Good-bye”

Figure 4: A flowchart of automated telephone service

ferent sequences of user actions and their corresponding ou
puts. For example, Figure 4 shows an illustrative flowchart

performing the two transactions separately in two différen
dial-ins in the same sequence; no matter how many times
the users press “*” when selecting services, the final result
should be the same ... All these properties can be used as
metamorphic relations to test the program automatically.

CONCLUSION

This article has introduced the concepts and a wide range of
applications of metamorphic testing. The unique charafter
MT is that it does not require human involvement to gener-
ate follow-up test cases and verify the test results and;éien

it can be fully automated. Because metamorphic relations
widely exist in both numerical and non-numerical areas, MT
is a practical approach applicable to the vast majority afre
life applications. Also because this method can be combined
with any test case selection strategy, MT is a useful apjproac
for practitioners to further exploit their successful teases.

As MRs are identified with regard to the specification, good
knowledge of the problem domain is necessary for an effec-
tive application of MT.

It should be noted that, because MT checks necessary rather
than sufficient properties, and also because it does nokchec
the correctness of individual outputs, pure MT is not enough
to establish confidence in the program’s correctness with re
gard to the original specification. Hence, MT should be com-
bined with other testing methods such as special-value test
ing to achieve the best results. In our future research, we
shall investigate how to select the most effective metamor-
phic relations when there is more than one candidate.

REFERENCES
1. Ammann, P.E. and Knight, J. C. Data diversity: an ap-
proach to software fault tolerand&EE Transactions on
Computers37 (4), 1988, pp. 418-425.

. Beizer, B.Software Testing Techniquegan Nostrand
Reinhold, New York, 1990.

Blum, M. and Kannan, S. Designing programs that check
their work, In Proceedings of the 31st Annual ACM
Symposium on Theory of Computif®TOC '89, ACM
Press, New York, 1989, pp. 86—97. Aldournal of the
ACM, 42 (1), 1995, pp. 269-291.

3.

for telephone transaction software. When users have dialed

in, they will need to select their preferred service languag
first. Then they will enter their user name and password.
In case of a failure, they will have two more chances to try.

For legal users, they will be asked to select services: press

“1” for Service 1; press “2” for Service 2; press “*”" to re-
peat the voice message, and press “#” to quit. For this kind
of software, many different combinations of user actiores ar

expected to produce the same results. For instance, a failed

followed by a successful login should be treated the same
as a successful login without a failure; doing something and

then cancelling it should be treated the same as quitting the

program in the beginning; performing Service 2 followed by

Service 1 in one dial-in should produce the same result as

4. Blum, M. Luby, M. and Rubinfeld, R.
Self-testing/ correcting with applications to numerical
problems,Journal of Computer and System Sciences
47 (3), 1993, pp. 549-595.

Chen, T.Y., Cheung, S.C., and Yiu, S.M. Metamor-
phic testing: a new approach for generating next test
cases, Technical Report HKUST-CS98-01, Department
of Computer Science, Hong Kong University of Science
and Technology, Hong Kong, 1998.

6. Chen, T.Y., Feng, J., and Tse, T.H. Metamorphic test-
ing of programs on partial differential equations: a
case study, IProceedings of the 26th Annual Interna-
tional Computer Software and Applications Conference

5.

(COMPSAC 200R IEEE Computer Society Press, Los 12. Hailpern, B. and Santhanam, P. Software debugging,

Alamitos, California, 2002, pp. 327-333. testing, and verification|BM Systems Journadl (1),

. Chen, T.Y., Kuo, F.-C., Liu, Y., and Tang, A. Meta- 2002, pp. 4-12.
morphic testing and testing with special valuesPho- 13. Hamlet, D. Predicting dependability by testing,Fro-
ceedings of the 5th International Conference on Soft- ceedings of the ACM SIGSOFT International Symposium
ware Engineering, Artificial Intelligence, Networking, on Software Testing and AnalygiSSTA 1995 ACM
and Parallel/ Distributed ComputinSNPD 2004, In- Press, New York, 1996, pp. 84-91.

ternational Association for Computer and Information 14 Howden. W.E. Reliability of the path analysis testing
Science, Mt. Pleasant, Michigan, 2004. strategy, IEEE Transactions on Software Engineering
. Chen, T.Y., Tse, T.H., and Zhou, Z. Q., Fault-based test- SE-2, 3, 1976, pp. 208-215.

ing without the need of oraclesnformation and Soft- 15 \anolache, L. I. and Kourie, D. G. Software testing us-
ware Technology45 (1), 2003, pp. 1-9. ing model programsSoftware: Practice and Experi-
. Cody, W. J., Jr. and Waite, VBoftware Manual for the ence 31(13), 2001, pp. 1211-1236.

Elementary FunctionsPrentice Hall, Englewood CIiffs, 16 \grell, L. J. A theory of fault-based testiHgEE Trans-
New Jersey, 1980. actions on Software Engineering6 (8), 1990, pp. 844—

. Gerald, C.F. and Wheatley, P.@pplied Numeri- 857.
cal Analysis Addison Wesley, Reading, Massachusetts, 17 Myers, G.JThe Art of Software Testinghiley, New
1999. York, 1979.

. Gotlieb, A. and Botella, B. Automated metamorphic

X X 18. Weyuker, E.J. On testing non-testable programise
testing, In Proceedings of the 27th Annual Interna- Computer Journal25 (4), 1982, pp. 465—-470.
tional Computer Software and Applications Conference ' '

(COMPSAC 2008 IEEE Computer Society Press, Los
Alamitos, California, 2003, pp. 34-40.

