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Abstract

Concurrency issues have been a serious problem in
the whole software industry. They very often lead to
hard-to-reproduce bugs and thus are very difficult to
locate and solve. In this paper, we introduce a novel
method for detection of one major category of con-
currency problems, data race. This method extracts a
Variable Dependence Tree from source code and finds
data race by analysis on the Variable Dependence Tree.
A prototype is built in Java according to the proposed
method and tested on production-level source code (C
language) with more than 400k LLOC. As a result, the
prototype tool successfully detected all known data races
including one relying on redundant structure of soft-
ware and proved the effectiveness and feasibility of our
proposed method.

1. Introduction

With the rapid growing complexity of software sys-
tems, concurrency issue has been an prevailing prob-
lem in software industry, which has drawn a lot of at-
tentions. Since concurrency issues can easily lead to
hard-to-reproduce bugs which take a long time to lo-
cate and fix, they are one of the most urgent problems
to solve for cost control. According to a survey of Mi-
crosoft in 2007[1], over 60% of 684 software engineers
had to deal with concurrency issues on a monthly ba-
sis. Concurrency bugs usually takes several days to de-
tect and debug, and thus most of 684 engineers would
welcome additional help on solving concurrency issues.
Another survey also showed that about 73% of the ex-
amined non-deadlock concurrency bugs were not fixed
by simply adding or changing locks, and many of the
fixes were not correct at the first try[2], which implies

the difficulties and costs software engineers face during
solving non-deadlock concurrency problems.

In this paper, we will focus on data race, one main
category of non-deadlock concurrency problem. Data
race only happens in some certain program states,
which makes its localization and fix very expensive in
industrial practice because there are too many states
in a real product’s program to check one by one. To
solve this problem, we propose a novel static method
for data race detection based on dependence analysis.
While a lot of existing static methods suffer from false
positives, the proposed method theoretically has few
false positives. By focusing on the dependence among
data accesses instead of data accesses only, the pro-
posed method can more effectively exclude program
states (each corresponds to a combination of data ac-
cesses) that are irrelevant to data races so that the false
positive rate can be kept in a manageable range. Re-
garding the target of detection, we choose source code,
the relatively downstream output of software develop-
ment. The main reason is that considering the fact
that data races can be introduced into the program in
both design and implementation, we want the proposed
method to cover different phases of software develop-
ment as much as possible.

In the rest part of this paper, Section 2 gives a clear
definition of data race. Section 3 introduces some re-
lated work on data race detection. Section 4 describes
the proposed method for data race detection. Section
5 shows a prototype tool we built based on the method
introduced in Section 4. Section 6 describes the how
the proposed method is evaluated with production-
level source code. Section 7 discusses about the pro-
posed method based on the evaluation. Section 8 gives
a conclusion.
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2. Data Race

Data race has been an important research topic since
1990s[3]. One widely used definition is:

definition 1. When multiple threads1 that concur-
rently run without any synchronization access the same
location of memory, and at least one access is write,
data race occurs.

In this definition, we can see data race is a bug due
to unsynchronized threads concurrently accessing the
same memory. Such data access will lead to undefined
behavior, and the actual ordering of accesses on the
shared memory is unknown because it is not specified
by source code. This unknown ordering may finally
lead to unintended output. However, there is still a
risk of bug when synchronized threads concurrently ac-
cessing the same memory. An improper synchroniza-
tion can also lead to unexpected execution orderings of
threads, which makes the final program output unin-
tended. In fact, according to one characteristic study
of concurrency bugs, around one third of the examined
non-deadlock concurrency bugs are caused by viola-
tion to programmers’ order intentions, which may not
be easily expressed via synchronization primitives like
locks and transactional memories[2]. Because both im-
proper synchronization and unsynchronization can lead
to an unintended thread execution ordering which fi-
nally leads to an unintended program output, we think
it is reasonable to treat improper synchronizations the
same as non-synchronization in data race detection.
Therefore, “without any synchronization” is actually
interpreted as “without any proper synchronization”
in this paper.

One typical case of data race is shown in Figure 1.
Thread A and thread B execute concurrently. One cal-
culation in thread B depends on two readings of vari-
able V ar, which is updated in thread A. If the syn-
chronization of thread A and B is improper or does
not exist at all, it is possible for thread A to update
V ar right between two read accesses of thread B, which
may finally lead to an incorrect program output.

There is another concept called race condition. Al-
though race condition is used interchangeably with
data race in some researches, it is more often consid-
ered as a more general concept. In this paper, we adopt
the more general definition as follows,

1Thread, task and interrupt service routine (ISR) are used
interchangeably to represent the general unit of concurrency. It is
true that different operation systems or programming languages
may have different names for the unit of concurrency, but we are
only interested in the general concurrency issues in this paper.

Figure 1. Data race on single variable

definition 2. When the correctness of a program’s out-
put is affected by the potential nondeterminism in tim-
ing or ordering of threads’ execution, race condition
occurs.

One interesting case is shown in Figure 2. Unlike
the case in Figure 1, this race problem happens on two
variables instead of one. More specifically, the two vari-
ables, V ar1 and V ar2 are actually a redundant variable
pair, which means V ar1 and V ar2 stands for exactly
the same thing, and they both exist due to the redun-
dant structure of software which is applied in a lot of
critical systems for safety concerns. Thread B reads
V ar1 and V ar2, then compares their value to check if
there is a malfunction in the system. Thread A runs
concurrently with Thread B and updates both V ar1
and V ar2. If Thread A updates the values of V ar1
and V ar2 when Thread B already read V ar1 but have
not read V ar2 yet, the comparison result of V ar1 and
V ar2 may be wrong and finally lead to a system fail-
ure. This kind of race problem actually happen during
development and is sometimes even more difficult to
find and fix.

According to definition 1 and definition 2, the race-
related problem shown in Figure 2 is actually a race
condition instead of data race because Thread A and
B are not accessing the same location of memory. How-
ever, this problem has almost the same mechanism
as data race except there are two variables involved.
Therefore, we think it is reasonable to improve defi-
nition 1 by changing “the same location of memory”
to “memory storing the same information”, which will
make definition 1 generalize similar problems better. In
the rest of this paper, we will use definition 3 instead
of definition 1 for data race and consider the problem
shown in Figure 2 as a data race.
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Figure 2. Data race on a redundant variable pair

definition 3. When multiple threads that concurrently
run without any synchronization access memory stor-
ing the same information, and at least one access is
write, data race occurs.

Without introducing definition 3, it is also possible
to consider a race on a redundant variable pair as a
combination of two data races, each of which includes
exactly one write access and one read access of one
variable, but we chose not to do so due to reduce false
positives (details can be found in the 5th paragraph of
Section 4.2).

3. Related Work

There are many researches done to solve the data
race. The simplest method is Mutual Exclusion Lock-
ing discipline, which requires a lock be held on every
access to a shared variable. Appropriate use of mu-
tual exclusion locks can eliminate atomicity violations
of any data, therefore prevent data races. Another sim-
ple method is to use buffer for shared variables, which
allows a program to has a copy of certain variable at
certain time and can use it at any time necessary. How-
ever, when we have a extremely large concurrent pro-
gram, both methods lead to a very high maintenance
cost. In addition, for programs of systems with limited
resources (e.g. automotive control systems), it is not
practical to use mutual exclusion locks or buffer for all
variable shared between threads.

Type System can be used to prevent data race.
The basic idea is to make a programming language
that cannot realize data race. A lot of early researches
on such type systems use locking discipline while some
other ideas for the type system construction have also
emerged. Recent work can be found in [4][5]. The
main problem in type-based solution is the high cost

of switching to a new language and the expression lim-
itations in the current race-free languages.

Dynamic Analysis analyzes the runtime behav-
ior of program to find potential data race. Most dy-
namic race detection tools do lockset-based analysis[6]
or happens-before analysis[7] or both[8]. Current dy-
namic methods for data race detection usually suffer
from two main problems. One is that such meth-
ods usually require instrumentation in the source code,
which can dramatically increase the development cost
sometimes. The other problem is that dynamic method
can only find data race in the execution paths taken in
the detection because the whole analysis is based on
runtime behaviors. This makes dynamic detection un-
practical for critical systems that run for a long time.
For some programs with much longer runtime than the
testing time (e.g. one automotive control program can
run for thousands of hours in millions of cars), it is
much more likely that a data race appearing in actual
execution was missed in dynamic testing.

Static Analysis is used for race detection as well.
Static method is usually very flexible, therefore the
performance varies from one to the other. Among
all static methods, some recent flow-sensitive meth-
ods showed potentials for industrial use because they
have a combination of soundness and completeness.
RacerX[9] is one good example. It intentionally sac-
rificed some soundness for better completeness (fewer
false positives) by applying several heuristics in the de-
tection. When elimination of false negative is not re-
quired, false positives can be controlled to a low level
with this method. Inamori and Yamada proposed a
static method for detection of data race caused by im-
proper use of interrupts in automotive systems [10]. It
searches for a data access pattern which ensures there
is no false negative, and runs several checks to reduce
false positives. In the target data access pattern, two
read accesses with low priority and one write access
with high priority happen on the same variable con-
currently. Since this method uses model checking to
eliminate false positives in the end, it suffers from the
state explosion problem, which makes this method not
feasible for large programs.

Model Checking is a method that can find all data
race including those hard-to-reproduce ones. Unlike
dynamic methods, model checking is able to explore
all theoretically possible execution paths by analyze
a model of the program instead of the program it-
self. However, model checking suffers from the state
explosion problem. When the size of target program
is very large, there are too many possible execution
paths to check, which takes a lot of time and memory.
In our previous work, we tried to apply a program slic-
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ing before model checking to solve the state explosion
problem[11]. For some complex programs, the state
explosion still appears after slicing, so we also tried
a divide and conquer strategy (divided the problem
into small parts, do model checking for each and the
interfaces between them). This strategy was proved
effective, but another question comes up as how to de-
termine which part to check first. When we know there
is a bug, it will be possible to find it earlier if we can
check the part that is most likely to contain bugs at
first. However, this requires some techniques of bug
prediction or vulnerability analysis.

4. Detection Method

In this section, we propose a novel method for data
race detection based on dependence analysis, which
statically analyze source code and point out data race
in one part of the code that the user is most inter-
ested in. The proposed method is consisted of two
main steps. The first step is extraction of variable de-
pendence tree, and the second one is race search.

4.1. Extraction of Variable Dependence Tree

The first step of our proposed method, extraction
of Variable Dependence Tree, is a technique originally
used for program slicing, which was introduced in our
previous work[11]. Program slicing is a popular tech-
nique used for locating bugs in large programs. This
technique allows the user to focus on the code of in-
terest, which can be the code that is most likely to
have bugs, or code related with some observed mal-
function. Specifically, it means to take a slice of the
program containing all statements that may affect a
specific variable at a specific point in the program. It
was originally proposed by Weiser [12] and have been
quite a hot topic in researches since then[13].

In our proposed method, instead of taking a slice of
program related to one variable the user is interested
in, we take a slice of variable dependence related to one
specific variable the user is interested in and represent
it in a tree called Variable Dependence Tree (VDT).
Although in [11], VDT is ultimately used for program
slicing, the actual program slicing is not necessary for
data race detection in this paper because the detec-
tion is purely an analysis on VDT. In the rest part of
this subsection, we will briefly introduce the concept of
VDT and several other concepts it is built on.

The study on dependence representation of program
is not a new research field. In 1987, Program Depen-
dence Graph (PDG) was first introduced by Ferrante,
Ottenstein and Warren to make explicit both the data

and control dependences for each operation in a pro-
gram. Specifically, PDG is a directed graph. In this
graph, nodes are statements and predicates; edges in-
cident to a node represent both the data values on
which the node’s operations depend and the control
conditions on which the execution of the operations
depends[14]. Based on PDG, Horwitz, Reps and Bink-
ley proposed System Dependence Graph (SDG) for in-
terprocedural slicing[15]. SDG extends PDG to incor-
porate sets of procedures rather than just monolithic
programs and can be considered as a set of PDGs.

Variable Dependence Graph (VDG)[11] is a concept
we developed based on concurrent version of SDG.
VDG is a graph derived from SDG in which each node
no longer represents a statement. A node in VDG
represents a variable or a constant in a specific state-
ment with a specific execution path or a specific control
statement (e.g. if statement, while statement) with a
specific execution path. For example, the same variable
appearing in two different statements is represented by
two nodes (one for each statement). The same variable
in the same statement that has two possible execution
paths is also represented by two nodes (one for each
execution path). The label of each node is the name
of the variable or the control statement this node rep-
resents. Besides the name shown in label, each node
also carries trace information of the variable or control
statement it represents. An edge in VDG represents
data dependence or control dependence between two
nodes. The method to extract a VDG from a program
is discussed in [11].

Variable Dependence Tree (VDT) is a VDG pruned
into a tree. There are two types of VDT, Goal VDT
and Start VDT. We will only use Goal VDT in this
paper. A goal VDT is a directed tree T (V,E) rooted
at node s, where V is the set of nodes, and E is the
set of edges. The set of children of node v is denoted
by C(v). ∀v ∈ V depends on ∀c ∈ C(v). The edge
between node v and its child c ∈ C(v) points from c to
v.

Since the transformation from VDG to VDT is al-
ready introduced in [11], we will only briefly describe
the basic idea about it in this paper. To prune a VDG
into a VDT, we search for nodes depending on the same
node in VDG. The set of nodes depending on an arbi-
trary node x is denoted by D. For all edges point-
ing from x to d ∈ D except the leftmost one, remove
the edge, and add a new leaf node x′

i as the child of
d ∈ D. The new leaf node x′

i means that the depen-
dence from x has already appeared elsewhere in this
tree and therefore can be ignored, where the subscript
i is just an index to prevent redundant node labels. A
simple example is shown in Figure 3 and Figure 4. Fig-
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Figure 3. VDG extracted from variable S

S
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C D D′
1 E
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Figure 4. VDT transformed from VDG in Figure 3

ure 3 shows a VDG extracted from variable S, where
all nodes represents variables. As we can see, node A
and node B both depends on node D. To prune this
VDG into VDT, we keep the leftmost edge (A,D) and
remove edge (B,D). Then we add a new leaf node
D′

1 as a child of variable B. In this way, the VDG in
Figure 3 is pruned into the VDT in Figure 4. When
the resources (e.g. time, memory) is limited, a partial
extraction of VDT is also possible, which is introduced
in [11].

By adopting VDT, we are able to eliminate all ar-
tificial orderings in the program and make potential
parallelism explicit. Since variables are represented as
nodes, it is more efficient to use VDT to detect data
race happening on specific variable(s). In the real-life
application, it is usually efficient and effective to ex-
tract a VDT from a certain error flag or output variable
the user is interested in. If the user does not have infor-
mation about such a variable and just wants to reach a
full coverage of the dependence in the program, which
is not recommended because of the efficiency concerns,
the user can extract a VDT from each final output of
the program.

4.2. Race Search

In the algorithm of race search, a concept called in-
terference dependence is used. The early definition and

S

A B

V ar V ar

V ar E E′
1 V ar

F G H I

Figure 5. The pattern of data race candidate

application of interference dependence can be found in
Krinke’s work[16]. According to Krinke, interference
dependence occurs when a variable is defined in one
thread and used in a parallel executing thread. Specif-
ically, in a VDT, if an edge connects two nodes with
different thread information, this edge represents an
interference dependence. In [17], Krinke also showed
how to analyze interference dependence efficiently.

In our proposed method, we find data race candi-
dates based on dependence analysis. Specifically, if
multiple threads affects the memory storing the same
information, this situation is considered as a data race
candidate. Then data races are extracted by filtering
these candidates through priority and reality checks.
After adopting the concept of VDT and interference
dependence, the situation considered as data race can-
didate can be interpreted to “In a VDT, 1 there are
multiple interference dependences, 2 variable(s) stor-
ing the same information appear on the descendant side
of each interference dependences.” Figure 5 shows an
example of such situation in VDT. There are two inter-
ference dependences (drawn as dotted arrows), which
means the value of S is affected by multiple threads.
Variable V ar appears on the descendant side (bottom
side in the tree) of each interference dependence, which
means that value of S depends on two readings of V ar
while these two readings are obtained in a thread dif-
ferent from where S is defined. When the thread where
S is defined and the thread(s) where two readings of
V ar are done execute concurrently, the value of S may
be different for a different execution ordering, thus an
unintended value becomes possible, which is exactly
the data access problem we showed in Figure 1. The
details on priority and reality checks will be introduced
later in this section.

It is important to notice that the variables storing
the same information on the descendant side of interfer-
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1 int x1 , x2 , a , b , c ;
2 int DI0 ;
3 int e r r f l g ;
4 void main ( void ){
5 x1=a+1;
6 x2=b+1;
7 i f ( x1!=x2 ){
8 e r r f l g =1;
9 }

10 }
11 void c a l c ( void ){
12 c=DI0 ;
13 a=c ∗2 ;
14 b=c+c ;
15 }

Figure 6. Sample code for data race due to indirect
influences of data access

ence dependence (V ar in the case of Figure 5) are not
necessarily the same variable, they can also be a redun-
dant variable pair (two variables storing the same in-
formation because of redundant structure), which cor-
responds to the case in Figure 2. Of course, in order to
recognize redundant variable pairs, the user has to col-
lect additional information about redundant variables
before data race detection. Fortunately, such informa-
tion can usually be extracted from design documents.

One interesting fact is that even when the user can-
not recognize redundant variable pairs, the data race
on redundant variable pairs can still be partially de-
tected. For the case shown in Figure 2, it is possible
that V ar1 and V ar2 finally depend on the same vari-
able in VDT. For instance, this variable can be some
raw sensor data, and V ar1 and V ar2 are calculated
based on it by different calculation methods. We did
not confirm if such case actually exist in evaluation,
but it is theoretically possible. Figure 6 shows a sample
code of this case. Main() and calc() are two functions
running concurrently. a and b are redundant variables
used to calculate x1 and x2 respectively in main(). If
x1 and x2 are not equal, an error flag is triggered. In
calc(), a and b are calculated based on variable c (raw
sensor data) with different methods. Indeed, data race
happens on the redundant variable pair a and b. How-
ever, the dependence on the same variable (variable c
in the sample code) makes such data race no different
from those on single variable. Thus it can be success-
fully detected even when we do not recognize a and b as
a redundant variable pair. Nevertheless, the informa-
tion on redundant variable pairs is still helpful because
it makes the data race detectable at a higher level in
VDT.

When locating data race candidates as introduced

Start

Input

Extract Variable Groups

Pick A Group

Interference For
All Variables?

Reality Check

Priority Check

Record

Any Groups Left?

Output

Stop

yes

pass

pass

yes

no

no

fail

fail

yes

Figure 7. Flowchart of race risk search

above, a kind of data race is intentionally excluded in
detection. No matter in the typical definition of data
race (definition 1) or the extended definition (definition
3) used in this paper, data race happens when only two
concurrent accesses of the same variable exist, one of
which writes and the other reads. In fact, data race
on a redundant variable pair can also be considered
as a combination of two such “1 read & 1 write” data
races. However, all “1 read & 1 write” data races are
excluded in detection for a lower false positive rate.
In a large concurrent program such as an engine con-
trol program, it’s normal to see many such “1 read &
1 write” data races, but they rarely cause real prob-
lems in practice since they are easy to find and fix by
conventional methods.

The algorithm of potential race search is shown in
the flow chart in Figure 7. The input block takes a
VDT, information on thread execution priority as well
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as redundant variable, and reality information as input.
Reality information refers to the information about if
some threads can run concurrently in reality. This
information can include synchronization information,
hardware limitations, limitations of the runtime envi-
ronment and so on. Then “Extract Variable Groups”
process traverses the VDT to extract nodes represent-
ing access to the variable that store the same infor-
mation and divides them into groups by variable (e.g.
V ar in Figure 5). After extracting variable groups,
“Pick A Group” process randomly picks one group for
further analysis. Decision block “Interference For All
Variables?” checks the paths from picked nodes to a
closest common ancestor. If there are interference de-
pendences in multiple paths, a data race candidate is
found and the algorithm goes to decision block “Reality
Check”. If not, the algorithm jumps to “Any Groups
Left?” block.

“Reality Check” and “Priority Check” block reduce
false positives by checking if the threads involved in
data race candidates can actually run concurrently
without synchronizations during runtime. “Reality
Check” checks concurrent execution limitations that
are not determined in the program under test (e.g. ex-
ternal synchronizations, limitations of hardware plat-
form or runtime environment). In a program with opti-
mized resource consumption and complexity, it is nor-
mal that only some threads can run in a specific sce-
nario and some threads can never do even if it is not
explicitly set in the program. For example, a thread
for situation when car speed is equal to 0 and a thread
for situation when car speed is higher than 100mph
can never run concurrently. “Priority Check” checks
the execution priority of threads involved in the data
race candidates. Given the OS or hardware platform
where the program runs, some threads are not allowed
to run concurrently due to execution priorities. For ex-
ample, in a lot microcontrollers, threads with the same
priority are executed sequentially instead concurrently,
therefore there can never be data race between them.
It should be noticed that rules in both checks are flexi-
ble and should be adjusted based on the program under
test or the goal of testing.

When both checks pass, the algorithm will go to
“Record” block. Otherwise, the algorithm jumps to
“Any Groups Left?” block. “Record” block records
candidates that passed the checks as potential data
races. Decision block “Any Groups Left” checks if there
is any extracted variable group left. if there is any, the
algorithm goes back to “Pick A Group” block to pick
up a new group and search for potential data race. If
not, the algorithm ends.

Figure 8. Overview of prototype tool

Figure 9. Screen capture of D-FORCE

5. Implementation

We built a prototype tool called D-FORCE in Java
for the proposed detection method introduced in Sec-
tion 4. As shown in Figure 8, it takes inputs including
source code, redundant variable information, thread in-
formation (priority and entry point of each thread) and
reality check information (which threads may run con-
currently) to generate data race list. For an efficient
implementation, we assumed the target programs are
only written in C language without loss of generality.
One screen capture of the D-FORCE is shown in Fig-
ure 9. Since it is also used in our other researches, only
area A and B are used for data race detection. Area
A shows the extracted VDT, and area B is a source
code reference window, which shows the corresponding
source code of selected node in VDT so that the user
gets a visual confirmation of actual source code.

Figure 10 shows a sample source code. If we extract
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a VDT from variable x, it will be visualized in area A
as shown in Figure 11. This is a standard result of the
first step of our proposed method, extraction of VDT.
Each node has an icon followed by a label. The icon
shows data type. If the node represents a variable,
a green round icon with a “v” inside is shown, just
like the one before label “x (L:16@func)”. If the node
represents a constant, a gray icon with a “c” inside is
shown, just like the one before label “2 (L:21@calc1)”.
If the node represents a control statement, a diamond
shape icon is shown, just like the one before label “[if]
(L:12@func)”. If a node represents anything that al-
ready appeared somewhere else in the VDT (such as
the D′

1 in Figure 4), the icon is a yellow stop sign,
just like the one before “x1 (L21@calc1)”. Label gives
more details about the node. For example, label “x
(L:16@func)” means the node represents variable x on
line 16 of function func. A label “[if] (L:12@func)”
means the node represents the if statement on line 12
of function func. When a variable node is at the write
side of an interference dependence, the variable icon is
marked with a red arrow and a “�” mark is added to
the beginning of the label.

The result of potential race risk search on the VDT
is also shown in Figure 4. At the root node, the
“(risk=1)” shows that there is one potential data race
detected. A “=ic1=” mark is added at the beginning
of the label “x (L:16@func)”, which indicates that this
variable is the common ancestor related with the first
detected data race. “=rd1=” and “=wo1=” indicates
the corresponding variable are one side of the interfer-
ence dependence related with the first detected data
race. When such a result is available, D-FORCE also
automatically generates a file with all formation about
locations of interference dependences and the common
ancestor, based on which the user can understand how
the potential data race can happen and trace back to
the exact problematic statements in the source code.

6. Evaluation

The feasibility of the proposed method in industrial
use is confirmed in our evaluation. We ran D-FORCE
on obsolete version code of two different powertrain
ECUs (Electrical Control Unit) developed in Hitachi
Automotive Systems. 100% (4 out of 4) data races ac-
tually encountered during development were success-
fully detected while the number of false positives was
maintained in a manageable range.

Both sets of source code are written in C and have
more than 400k LLOC (Logical Lines of Code). D-
FORCE was executed in Windows 7 running on a PC
with a Intel Core i7 870 CPU (2.93GHz) and 16GB

1 int a , b , c , x , x1 , x2 ;
2 int DI0 ;
3 unsigned char e r r f l g =0;
4
5 void c a l c 1 ( void ) ;
6 void c a l c 2 ( void ) ;
7 void input ( void ) ;
8
9 void func ( ){

10 c a l c 1 ( ) ;
11 c a l c 2 ( ) ;
12 i f ( x1 !=c | | x2!=c ){
13 e r r f l g =1;
14 }
15 else {
16 x=x1 ;
17 }
18 }
19
20 void c a l c 1 ( ){
21 x1=a ∗2 ;
22 b=x1 ;
23 }
24
25 void c a l c 2 ( ){
26 x2=a<<1;
27 b=x2 ;
28 }
29
30 void input ( ){
31 a=DI0 ;
32 }

Figure 10. Sample source code

Figure 11. One example of VDT visualization in
D-FORCE
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RAM. The whole analysis finished on both sets of
source code within 15 minutes. Redundant variable in-
formation and thread information were obtained man-
ually by reviewing design documents. Since we no-
ticed that some false positives appeared in initializa-
tion threads, we manually excluded all initialization
threads during data race detection, which can essen-
tially be considered as a kind of reality check.

Among 4 known data races, 3 of them have the same
data access pattern, which is exactly the typical case
shown in Figure 1. The other one is a data race on
a redundant variable pair as shown in Figure 2. All 4
data races were confirmed as bugs leading to system
failure in previous development. According to our ob-
servation, false positives still exist, so a more accurate
measurement on completeness is necessary in the fu-
ture work, after which we can decide the direction for
further improvements of the proposed method.

7. Discussion

In the proposed method, we did not use synchro-
nization information to find data race candidates be-
cause we wanted to detect data race due to both “no
synchronization” and “wrong synchronization”. Obvi-
ously, synchronization is partially used in the priority
check to reduce false positives, but there are still some
synchronization informations that can be helpful but
are currently not used. For instance, information on
interrupt disables are used in the work of Inamori and
Yamada[10] to reduce false positives while it is not used
in our method at all. Such underutilization of syn-
chronization information has pointed out one possible
direction for us to further reduce false positives.

Dependence analysis in the proposed method allows
data race detection to focus on interference in depen-
dence instead of accesses on certain variables. This
enables detection of data race resulted from indirect
influences of data access. The code in Figure 6 is also
an example for this feature. When variable c is up-
dated in one thread, a concurrently running thread
does not necessarily have to read exactly variable c
multiple times to cause a data race. In the thread
where c is updated, variable a and b are defined based
on c. A concurrently running thread can also cause a
data race by reading a and b and using their values
together for some other calculation (a and b might be
calculated from different c values). In this case, there
are at most two accesses on variables shared among
threads (a and b), so it is very hard to detect by con-
ventional methods without generating many positives.
In our proposed method, this is not a problem due to
dependence analysis.

1 int a ;
2 void c a l c ( int ∗pt ) ;
3 void main ( void ) ;
4 a=0;
5 c a l c (&a ) ;
6 }
7 void c a l c ( int ∗pt ){
8 ∗pt=3 ;
9 }

Figure 12. Sample code for data access through
pointer

While a lot of data race detection methods have trou-
ble analyzing program with pointers, dependence anal-
ysis in our proposed method helps to find out which
piece of memory is accessed when pointers are involved
in the data access. One example is the sample code in
Figure 12. Main() and calc() are two function that
run concurrently. They actually access the same vari-
able a, but the write access in calc() is done through
a pointer passed to it. Since pointers are also included
the dependence analysis, it is very easy to figure out
the two threads are accessing the same variable a in
our proposed method.

It is also important to notice that our proposed
method is naturally compatible with programs contain-
ing parallel threads even if we only mentioned concur-
rent threads so far. For the proposed method, the only
difference brought by parallel threads is that the data
accesses can not only be concurrent, but also simulta-
neous (physically at the same time). This difference
cannot affect how we identify data race candidates or
the correctness of checks applied to filter them, so the
proposed method can also detect data races in program
with parallel threads as long as we have information
about which threads run in parallel.

When a data race happens, the program’s output
may still be correct after certain processing in the pro-
gram. Such situations are relatively rare, but still pos-
sible. The data race that does not affect the correct-
ness of a program’s output is referred to as “benign
data race”[18]. Our proposed method cannot com-
pletely distinguish benign data race, which seems like a
problem. However, recent researches showed that it is
impossible to guarantee that a data race never affects
the correctness of a program as long as the compiler or
hardware can be changed[19]. Therefore, we chose to
include “benign data race” in the detection results.

8. Conclusion

In this paper, we proposed a novel method for data
race detection based on dependence analysis. A pro-
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totype tool is build in Java to realize the proposed
method. By running the prototype tool on production-
level code of two real industrial products, the proposed
method proved to be feasible for data race detection in
industrial practice. However, more empirical validation
is still necessary in the future. Besides the programs we
used for evaluation in this paper, the proposed method
should also be tested on more programs for a more
accurate measurement of soundness and completeness,
after which we may be able to make necessary improve-
ments (e.g. further reducing false positives by a better
utilization of synchronization information such as in-
terrupt disable and mutex).
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