
Newsletter 什om Software Engineers Association

Vol. 13, Number 5 May, 2002

目次

編集部から

Infonnatics of Infrastructur巴ー AFuture for Computing Science -

Abstract

Contents

1. Some Software Engineering Dogmas

2. On lnfrastructures and Their Components

3. Work Flow Domains

4. TypeNaJue "Systems"

5. Conc¥usions

6. Bibliographical Notes

7. figures for S巴ction3.2

。

Dines Bjorner

2

5

8

13

43

49

49

51

ソフトウェア技術者協会
Software Engineers Asociation

ソフトウェア技術者協会 (SEA) は.ソフトウェアハウス，コンピュ ー タメ カ，計算センタ，エンドユーザ，大学，研究所な

ど，それぞれ異なった環境に置かれているソフトウェア技術者または研究者が，そうした社会組織の墜を起えて.各自の経験や技

術を自由に交流しあうための「場J として 1985年 12 月に設立されました.
その主な活動は，俊関誌 SEAMA1L の発行，支部および研究分科会の運営，セミナー/ワークショップ/シンポジウムなどのイ

ベントの開催，および内外の関係諸国体との交流です.発足当初約 2∞人にすぎなかった会員数もその後増加し，現在. ~tは北海

道から南は沖縄まで. 5∞余名を鍾えるメンバーを擁するにいたりました.法人賛助会員も 25社を数えます.支部は，東京以外

に，関西，横浜，名古屡， 九州，広島，東北の各地区で設立されており，その他の地域でも設立準備をしています.分科会は，東

京，関西，名古屋で，それぞれいくつかが活動しており.その他の支部でも，月例会やフォ ラムが定期的に開催されています.
「現在のソフトウェア界における最大の課題は，技術移転の促進である j といわれています.これまでわが国には，そのための

適切な社会的メカニズムが欠けていたように思われます. SEA は，そうした欠落を補うべく.これからますます活発な活動を展

開して行きたいと考えています.いままで日本にはなかったこの新しいプロフェアショナル・ソサイエティの発展のために，ぜひ

とも，あなたのお力を貸してください.

代表訴事: 深瀬弘恭

常任総事: 荒木啓二郎高橋光裕田中一夫玉井哲雄中野秀男

訴事: 伊藤昌夫大場充落水i告一郎窪田芳夫熊谷章小林修桜井麻里

酒匂寛塩谷和範篠崎直二郎新谷勝利新森昭宏杉田義明武田淳男

中来田秀衡野中哲野村行憲野邑昌満端山殺平尾一浩

藤野誠治松原友夫山崎利治和田喜久男

事務局長: 岸田孝一

会計監事: 橋本勝吉村成弘

分科会世話人環境分科会(SIGENV) :塩谷和範囲中慎一郎渡漫雄一

教育分科会(SIGEDU) :君島浩篠崎直二郎杉田義明中園順三

ネットワ ー ク分科会(SIGN町) :人見庸松本理恵

プロセス分科会 (SEA-SP1N)) :伊藤昌夫塩谷和範高橋光裕田中一夫端山綾藤野量産治

フォーマルメソッド分科会(SIGFM) :荒木啓二郎伊藤昌夫熊谷章佐原伸張漢明山崎利治

支部世話人 関西支部:白井義美小林修中野秀男横山博司

横浜支部: !野中哲藤野晃延北俊正顕
名古屋支部:筏井美枝子石川雅彦角谷裕司野呂昌満

九州支部:杉田義明武田淳男平尾一浩

広島支部:大場充佐藤康臣谷純一郎

東北支部布川博士野村行憲和田勇

賞助会員会社:ジェーエムエーシステムズ SRA :PFU テプコシステムズ構造計画研究所富士通
オムロンソフトウェア キヤノン 富士通エフ・アイ・ピ一 新日鉄ソリューションズ

ダイキン工業 オムロン富士電機ブラザー工業オリンパス光学工業

リコー アルテミスインターナショナル N1Tデータ ヤマハ福井コンピュータ

日本ネスト オープンテクノロジーズ SRA西日本 日本総合研究所 ハイマックス

(以上25社)

S E AMA 1 L V 0 1. 1 3 , N o. 5 2 0 0 2 年 5 月 3 1 日発行編集人岸田孝一
発行人ソフトウェア技術者協会 (S EA)

〒 160-0004 東京都新宿区四谷 3 一 1 2 丸正ピル 5F
T壬: 03子-3356-回~1077 F長: 03与-3356-ト1072 se伺a@s鈎ea.oωr巴吋.j

印制所有限会社錦正社 〒 130-0013 東京都墨田区錦糸町 4 一 3 一 1 4
定価 500 円 (禁無断転載)

Message from Editor Seamail Vo1.l3, No.5

編集部から

食

この号は当初 2 月に開催された UML Workshop のレポートを特集する予定でしたが 6 月の総会に併
設して行われる特別 Forum の招待講師Dines Bjor問先生から，参考資料として力のこもった長論文が送ら
れてきましたので Forum に参加できない方々の便宜も考え，全ページを割いて載せることにしました.

**
Bjomer 先生は，形式仕様言語 VDM の開発者であり，ヨーロツパにおける Formal Approach の普及・実践
活動の中心人物としての活躍は，すでに SEA 会員のみなさんも御存知の通りです.

会食*

また，数年前まで，マカオに設立された国連大学・国際ソフトウエア技術研究所 (UNU江1ST) の初代所長
として，開発途上国に対する先進ソフトウエア技術の導入を目指して，精力的名活動を展開されました.

SEA との関わりでは. 1995年以降，中国での国際会議 ISFST やその他 ICSE 併設ワークショップの共同
開催など，いろいろと御協力いただきました.

1た1公安**

今回寄稿いただいた論文は，さきごろの金融システム・トラプルでも明かになったような IT 社会におけ
るインフラスドラクチャの構築および保全にかかわる諸問題に関して，計算機科学やソフトウェア工学がど
のような形で貢献すべきかを具体的に論じた力作です.じっくりとお読みください.

**食会食会

-0-

Informatics of Infrおもructures*

A Future for Computing Science

Dines Bj�ner

Computer Science and Engineering

Informatics and Mathematical Modelling

Technical University of Denmark

DK-2800 Kgs. Lyngby, Denmark
E-Mail: db@imm.dtu.dk

14th of May 2002

Abstract

After some introductory characterisations of computer science, computing science,
and (computing systems cum) software engineering, we briefly discuss the dogmas of a
domain engineering oriented and a ゐrmaltechniques based approach to software engineerｭ
ing. Then we try delineate the concepts of in企astructure and in企坦trúcture components.

T:l

T:2

T ・3

We illustrate the concept of infrastructure by hinting at some concrete and abstract dかす:4

main models of infrastructure components: Railway systems, electronic commerce, logistics,
health-care, and transaction script work flows; and at もwo models of varie七ies of views of

‘information' (type/value) entities: Graphical user interface (GUI) and relational database
systems , and document systems. ...:5

The informal and formal examples of 出e .paper are mere sketches; They serve to

indicate somewhat uncommon aspects of what has. to be dealt with in domain mo.dels
of infrastructure component systems. And もhey serve もo indicate that s�h models are
composed from diverse, yet logically related concepts. Some such examples are teasers,
some con凶in ， perhaps, an eye-or mind-opener. ...:.
The paper ends with some reflecもions on r�es of semiotics: Pragmatiα， semantics,
and syntaxj of method and methodology principles, techniques and tools, in particular
such which c叩 be grouped under general conceptualis抗ions such 剖 property-and modelｭ
-orientedness, denotational versus computational models, hierarchical and compostional
model-building and -presentation, models of time， 叩ace and timejspace, coni�urations
描 compositionsin a spectrum between contexts and states, etc., domain abstraction and ...:7

modelling of domain attributes, stak• .holder perspectives, and domain facets, require-
ments projection, instantiation, extension, and initialisation, and software design issuω
such as architecture, comp∞ent design, modularisation (object-orientedness) , etc.
The aims of the paper are to present an overview of programming methodological

issues supported by a number of illustrative example hints, so 回 to better achieve 出e ... :・

objectives of the paper which are もo sugge鉱山atproper professional educ抗ion 組d 色raining

in informatics is based on courses with a fair selection of computer science topics, and
Wl出 a heavy emphasis on topics in computing science cum programming methodology -
cum software engineeringj to suggesも that “formal methods" is noも a course one gives in
separation from all other info

"Extended text of a (shorter) talk presented at SEA Seminar, Tokyo, Monday June 17th, 2002

1

SEA Seminar, Tokyo: ー Informatics of In企astructures

part of all computing science and software. engineering courseSj and もosuggest that maybe
the borders between AI and software engineering constitute un-natural divisions.

2

5
5
5
5
5
6
6
6
6
6
7
7
7
7
8
8
8

Some Software Engineering Dogmas

1.1 CS Eﾐ CS Eﾐ SE
1.2 Informatics

1.3 A Triptych Software Engineering ・・・・・・・・・・ . ・・・・・・・・
1.3.1 The Dogma

1.3.2 Some Issues of Domain Engineering
The Facets:

The Evidence:

On Documentation in General:

Some Issues of Requirements Engineering

Domain Requirements: . .

Interface Requirements:

Machine Requirements:

1.3.4 Some Issues of Software Design

Formal Techniques
1.4.1 Method

1.4.2 Methodology

Contents

1

1.3.3

1.4

由
。
。
o
n
v
n
v
n
E
n
v
n
v
n
v
n
u
n
u
n
U

唱
i
n
4
n
4
n
4
n
a
n
d

唱
i

唱
i
1
&
1
&

唱
i

唱
i

噌
i

唱
i

唱
i

On Infrastructures and their Components

2.1 The World Bank Concept of Infrastructure

2.1.1 A Socio-Economic Characterisation

2.1.2 Concretisations.

2.1.3 Discussion.

The UNUjllST Concept of Infrastructure.

“What is an Infrastructure 7"
2.3.1 An Analysis of the Characterisations
2.3.2 The Question and its Background

Denotational Engineering:

Concurrency Engineering: .

TypejValue Engineering:

Logics, Agents and Languag• based Knowledge Engineering:
Computer Science:

Semiotics: Pragmatics, Semantics & Syntax:
Di配U鉛ion:

A Third Attempt at an Answer . .

2

2.2

2.3

q
d
。
a
a
a
z
a
且z
a
q
E
U

噌
A
1
&

唱
i

唱
A
1
&

唱
i

2.3.3

Work Flow Domains

3.1 Work Flows and Transactions .

3.2 Railways..

3.2.1 On Railway Systems .

3.2.2 A Hierarchical Narrative: Nets, Lines, Stations and Units
3.2.3 A Formalisation: Nets, Lines, Stations and Units

3

1“ h olM・y 2002 , 12:16 @Dine.Bj・rnu ， Pred・ ...cj 11 , DK-2840 Holte , Dcn皿町k ， 2001-2002

A Future for Computing Science - Monday June 17th, 2002 3

3.2.4 A Compositional Narrative: Unit States, Routes and Train Movement 16
3.2.5 A Formalisation: Unit States, Routes and Train Movement 17
3.2.6 Discussion.................................. 17

3.3 Electronic Administration and Business .. 19

3.3.1 Traders: Buyers and Sellers .. 20

3.3.2 Traders: Agents and Brokers . 20

3.3.3 Schematic Transactions .. 20

3.3.4 Formalisation of Syntは. •• 21

3.3.5 “TheM町ket" .. 22

3.3.6 Formalisation of Process Protocols 22

Annotations: 23

Annotations: 23

3.3.7 Requirements................................ 25

Projection Synopsis: .. 25

Instantiation Synopsis: .. 25

Extension Synopsis: 26

Initialisation Synopsis: .. 26

3.3.8 Discussion.................................. 26

3.4 Logistics....................................... 26

3.4.1 Informal View,. 26
Freight '1旨ansport: .. 26

Logistics Nets: 27

A Freightτ'ransport Trace: .. 27

The Dynamic State of A L6gistics Net: 27

Clients: .. 27

Logistics Firms:. .. 27
'1旨ansport Companies: 28

Hubs: .. 28

Conveyors: \ ・・・・ 28
3.4.2 System Formalisation 28

States: .. 29
System Ptocess: 29

Transaction Message Types: 29
Channels: 29

3.4.3 Client Formalisation¥. 30

Client Types: .. 30

Client Auxiliary Functions: 30
Client Processes: 31

3.4.4 Logistic Firm Formalisation .. 32
Function Types: 32

Logistics Firm Processes: 32

1 ・色h of 1l4・7 2002 , 12:1& @ Diuu Bj・rner I Predn'句 11 ， DK-2・・0 賞。lt: e ， D叩.rnark:， 200ト2002

4 SEA Seminar, Tokyo: - Informatics of In企astructures

3.5.3 Client 件 Medical Doctor .. 35

3.5.4 Remaining Interactions 37

3.5.5 Discussion.................................. 37

3.6 Transaction Scripts .. 37

3.6.1 The Problem .. 37

3.6.2 Clients, Work Stations, Scripts and Directives. 37
3.6.3 A Simple Model of Scripts .. 38

Formalisation of Syntax: .. 38

Annotations 1:•.... •... • 38
3.6.4 A Simple Model of Work Flow .. 39

Formalisation of Semantics - The Work Flow System:. 39

Annotations 11: .. 39

Formalisation of Semantics - Clients: 39

Annotations 111: 40

Formalisation of Semantics ー Clients Continued: 40

Annotations IV: 40

Formalisation of Semantics - Work Stations: 40

Annotations V: .. 41

3.6.5 Discussion.................................. 41

3.7 Discussion - So Far! .. 42

Interpretation as Health-care System: 42

General Comments: 42

4 TypejValue “ SysteInS" 43

4.1 Intuition....................................... 43

4.1.1 The Problem .. 43

4.1.2 Patient Medical Records .. 43

4.1.3 Bi11-of-Lading .. 43

4.1.4 Product Catalogue .. 43

4.1.5 Discussion ・. • .・ 44

4.2 Documents: Originals, Copies, Editions and Physics 44
4.2.1 Originals, Masters and Copies. .. 44
Narrative: .. 44

Formalisation: 44

Comments: .. 44

Axioms: .. 45
4.2.2 Editions................................... 45

4.2.3 The Physics of Documents. .. 45

Narrative: .. 45

Formalisation of Document Locatability: 46

Monotonicity: .. 46

4.2.4 Discussion.................................. 46

4.3 GUIs: Graphic User Interfaces and Databases 47

4.3.1 GUIs: Graphic User Interfaces .. 47

The GUI Display::........ 47

GUI Types & Values: 47

4.3.2 Data Bases . ー 48

@ Dines Bj町田r ， Fred..ej 11 , DK-2840 Holte , D enm a.rlc , 2001-2002 14th of M・1 2002; 12"6

~

A Future for Computing Science - Monday June 17th, 2002

4.3.3 Discussion.

4.4 Discussion.

5 Conclusion

5.1 Summary and Discussion

An Apology:

5.2 “What is an Infrastructure ?"
5.2.1 A Possible Impact of Computing Science upon Infrastructures. . . .

6 Bibliographical N otes

7 Figures for Section 3.2

1 80me 80氏ware Engineering Dogmas

1.1 CS Eﾐ CS Eﾐ SE

5

48

48

49

49

49

49

49

49

51

Computer science, to me, is the study and knowledge of the artifacts that can “exist" inｭ
side computers: Their mathematical properties: Models of computation, and the" underlying
mathematics itself.

Computing science, to me, is the study and knowledge of how to construct those artiｭ
facts: programming languages, their pragmatics, their semantics, including proof systems,
their syntax; computing systems: Operating systems, datab笛e management systems, data
communication systems, f3c., and applications - such 出 we shall illustrate some today. The

r:9

li ，b・・lintro

difference, between comput旦 and computing science, is, somehow, dramatic. ・1・

Software engineering, to me, spans domain engineering, as we shall soon characterise
it, requirements engineering , and software design. Ahd: Software engineering is the art,
discipline, craft, science and logic of conceiving, constructing, and maintaining software. The
sciences are those of applied mathematics and computing. 1 consider myselfboth a computing

scientist and a software engineer.

1.2 Informatics

Informatics , such 踊 1see it us a combination of: Mathematics, computer & computing science,
software engineering, and applications. Some “sobering" observation: Informatics relates to
information technology (IT) 描 biology does to bio-technology; 黎cetera !

1.3 A Triptych Software Engineering

1.3.1 The Dogrna

The Triptych Dogma: Before software can be designed, we must understand the requirements.
Before requirements can be expresSed we must understand the (application) domain

Software engineering thus consists of the engineering of domains, engineering of require-

T・11

r:12

ments, and the design of software. Software development , to us, encompass白 all three. ,..:13

In summary, and ideally speaking: We first describe the domain: Ð , from which we define
the domain requirements; from these and interface and machine requirements , ie. from 'R, we

1・色h .fM・， 2002 , 12:16 @ Dinu Bj.rner, Predn'cj 11 , DK-214.0 H o1tc , Den皿町k ， 200ト2002

r:U

r:l!

T ・ "

r:)i

r:lI

r:l・

T:20

T: l・

T:15

6 SEA Seminar, Tokyo: - Informatics of In企astructures

specl命 the software design: S. In a suitable reality we secure that all these are properly

documented and related: Ð , S ト=冗， when all is done !
In proofs of correctness of software (S) wrt. requirements (冗)描sumptions are often
stated about the domain (ﾐ). But, by domain descriptions ﾐ we mean “much more" than
just expressing such 出sumptions .

1ふ2 SOIne Issues of Domain Engineering

The Facets: To understand the application domain we must describe it. We must , 1 believe,
describe it , inforrr凶ly (ie. narrate) , and formally, as it is, the very basics, ie. the intrinsics;
the technologies that support the domainj the management & organisation structures of the
domainj the rules & regulations that should guide human behaviour in the domainj those
human behaviours: the correct , diligent , loyal and competent worksj the absent-minded ,
“C酪ual" ， sloppy routinesj and the near, or outright criminal, neglect. &c.
In [1] we go into more details on domain facets while in the planned [2] we present a more
comprehensive view of domain engineering. Finally our lecture notes (cum planned book [3])
brings, the “full story" .

The Evidence: We inform about the domain: Present a not necessarily descriptive synopsis

ofit , emphasising, typically, the pragmatics, and the needs and ideas ofthe domain that might
lead to computing support.

We describe the domain: We rough sketch it, and analyse the sketches to arrive at domain
concepts. We establish a terminology for the domain. We narrate the domain: A concise

professionallanguage descr�tion of the domain using only (otherwise precisely defined) terms

T:16 of the domain. And we formalise the narrative.

T:17

We analyse the narrative and the formalisation with the aims of: validating, “against"
domain stak• holders, and veri.命ing properties of, the domain description.

On Documentation in General: In general there will be many documents for each phase1 ,
stage2 and step3 of development: Informative documents: Needs and concepts, development
briefs , contracts, &c. Descriptivejprescriptive documents: Informal (rough sketches, ter・

T:ll minologies, and narratives) and (formal models) analytic documents: Concept formation ,
validation, and verification. These sets of documents are related , and occur and r• occur for
all phases.

T: l・

T:20

1ふ3 Some Issues of Requirements Engineering

Requirements are about the machine: The hardware and software to be designed.

We see requirements prescriptions 出 composed from three viewpoints: Domain, interface
and machine requirements.

We now survey these.

lDom国n， requirements and software design are three main phases of software development.
2Ph回目 may be composed of stages, 8uch as for example the domain requirements ， 七he interface requireｭ
ments and the machine requirements s七ages of the requirements phase, or，回国other example，七he software
architedure and 七he program compone凶 design stages of the softw田'e design phase.
3Stages may 七henconsist of one or more steps of development, typically data type reification and opera七ion

tr阻皐formation -also known 回 refi.nements .

@ Dine. Bj・rner ， Pred....ej 11, DI'-2840 Holte, Denm町k ，2001-2002 14th 01 M・1 2002 , 12:18

A Future for Computing Science - Monday June 17th, 2002 7

Domain Requirements: Requirements that can be expressed solely with reference to, ie.
using terms of, the domain , are called domain requirements. They are, in a sense, “derived"
from the domain understanding. Thus whatever vagueness , non--determinism and undesired
behaviour in the domain, as expressed by the respective parts of the domain intrinsics, support
technologies, management & organisation, rules & regulations, and human behaviour, can .-021
now be constrained, if need be, by becoming requirements to a desirably performing computing
system.

The development of domain requirements can be supported by principles and techniques

of projection: Not all of the domain need be supported by computing - hence we project
only part of the domain description onto potential requirements; instantiation: Usually the

domain description is described abstract1y, loosely as well 槌 non-deterministically - and

we may wish to remove some of these properties; extension: Entities, operations over these, .-022
events possible in connection with these, and behaviours on some kinds of such entities may
now be fe出ibly “realisable" - where before they were not , hence some forms of domain
requirements extend the domain; and initialisation: Phenomena in the world need be rep-
回目前ed inside the computer - and initialising computers is often a main computing task

in itself，出 is the ongoing monitoring of the “state" of the ‘outside' world for the purpose
of possible internal state (ie. database) updates. There are other specialised principles and

techniques that support the development of requirements.

Interface Requirements: Requirements that deal with the phenomena shared between

external users (human or other machines) and the machine (hardware and so氏ware) to be

designed, such requirements are called interface requirements. Examples of are回 ofconcern

for interface requirements are: Human computer interfaces (HCI, CHI) , including graphical

T:23

user interfaces (GUIs) , dialogues, etc. , and general input and output (examples a四 Process

control data sampling (input sensors) and controller activation (output actuator)). Some T:24

interface requirements can be formalised , others not so easily, and yet others are such for
which we today do not know how to formalise them. We shalllater, in Section 4.3 give an
example of a GUI prescription.

Machine Requirements: Requirements that deal with the phenomena which reside in the

machine are referred to 踊 machine require.ments. Examples of concerns of machine requireｭ
ments are: performance (resource [storage, time, etc.] utilisation) , maintainability (adaptive,
perfective, preventive, corrective and legacy-orier山d) ， platform constraints (hardware and

base software system platform: development, operational and maintenance) , business process
re--engineering, training and use manuals, and documentation (development , installation, and
maintenance manuals, etc.).

1.3.4 Some Issues of Software Design

Once the requirements are reasonably well established software design can start. We see

software design 槌 a potentially mu1tiple stage, and, within stages , mu1tiple step process.
Concerning stages one c組 identify two “abstract" stages: The software architecture design
stage in which the domain requirements find an computable form , albeit still abstract. Some

T:25

T :2‘

interface requirements 訂e normally also, abstract design-wise “absolved'\ and the prcト T:27

gr出nmecomponent design stage in which the machine requirements find a computable form.

u ‘h .f 恥tf&J' 2002 , 12:16 @ Dinel Bj・rner ， F'redlycj 11 , DK-2'.O H olt. c , Denmark , 200ト2002

r:21S

T:2・

T:30

T:31

M曲。a

T:32

T・33

'7";28

8 SEA Seminar, Tokyo:・ー Informatics of Infrastructures

5ince machine requirements are usually rather operational in nature , the programme compか
nent design is less abstract than the software architecture design. Any remaining interface

requirements are also , abstract design-wise “absolved" .
This finishes our overview of the triptych phases of software development.

1.4 Formal Techniques

A significant characteristics in our approach is that of the use of formal techniques: formal

specification, verification & model checking.

1.4.1 恥1:ethod

The area 回 such is usually - colloquially - referred to 出“formal methods". By a method

we understand a set of principles of analysis and for selecting techniques and tools in order

effi.ciently to achieve the construction of an efl�ient artifact. By formal specification we mean

a specification by means of a formallanguage: One having a formal semantics, a formal proof
system and a formal syntax. In this paper we shall rather onトsidedly be illustrating just

the specification side and not at all show any verification issues. And in this paper we shall

...:29 rather on• sidedly also be using only one tool: The Raise Specification Language: RSL [4, 5].

'7":30

'7":31

li.仙õ，油.由b..吋.

A method can never be formal: The principles for selecting techniques and tools, and the
principles of concept analysis cannot be formalised , let alone mechanised. Humans perform
these tasks.

Quite a considerable set of techniques and tools can be formalised. 50 we prefer the term

'formal techniques: Specification and verification¥

1.4.2 Methodology

By methodology we understand the study and knowledge of (varieties of) methods, in parｭ
ticular techniques and tools: Petri nets , VDM (VDM-SL) , Z, RAISE (RSL) , B, etc. , C5P,
5tat• charts (Statemate), etc., CASL , Cafe-OBJ , Maude, etc. even “UML" !

2 On Infrastructures and their Components

International Institute for 50ftware Technology, located , then as now, in Macau , near Hong
...:32 Kong and Canton. My view of the infrastrudure concept arose then. UNUjllST w描 placed

in a UN + World Bank environment4. In that environment such terms 笛 infrastructure ， selι
-reliance, and sustainable development , were part of the daily parlance. How w出 UNUjllST

to respond to this. It had to ! And, 1 claim, we “ informaticians" are perhaps best at trying
to understand the infrastructure concept

'7":33

2.1 The 羽Torld Bank Concept of Infrastructure

One may speak of a country's or a region's infrastructure.5 But what does one mean by that ?

‘Also known as the Bret七on Woods Institutions.
5Winston Churchill is quoted to have said, during a debate in the House of Commons, in 1946: ... The

yo四gLabourite speaker that we have just listened to, clearly wishes to impress upon ms constituency the fact
that he has gone to Eton 回d Oxford since he now 回目 such fasmonable terms a 'in企'a-strudure' . . .

@Dine. Bj・rner ， Pred・yej 11 , DK-2S40 Holte , Denma.rk , 2001-2002 14th of M・y 2002 , 12:16

A Future for Computing Science - Monday June 17th, 2002 9

2.1.1 A Socio-EconOInic Characterisation

According to the World Bank ,6 'infrastructure' is an umbrella term for many activities referred

to 酪 'social overhead capital' by some development ecbnomists, and encomp描ses activities

that share technical arid economic features (such as economies of scale and spill-overs from

users to nωon刊帽

Our interpretation of the ‘'inf企ra酪structure' concept , see below, albeit di官erent ， is, however,
commensurate.

2.1.2 Concretisations

Examples of infrastructure components are typically: The transportation infrastructtire subｭ

-∞mponents (road , rail , air and water [shipping]); the financial services industry (banks,
insurance companies, securities trading, etc.); health-care; utilities (electricity, natural g槌，
telecommunications, water supply, sewage disposal, etc.); and perhaps also education, etc. ?

2.1.3 Discussion

There are thus are槌 of human enterprises which are definitely included, and others are酪
that 田em definitely excluded from being categorised 出 being infrastructure components.

The production (ie. the manufacturing) - of for example consumer goods - is not included.

Fisheries, agriculture, mining , and the like likewise are excluded. Such industries rely on
the infr槌tructure to be in place - and functioning. What about the media: TV, radio
and newspapers? It seems they also are not part of the infrastructure. But what about
advertising and marketing. There seems to be some grey zones between the service and the

manufacturing industries.

2.2 The UNUjllST Concept of Infrastructure

UNU/IIST took7 a more technical, and, perhaps more general, view, and saw infrastructures
槌 concerned with supporting other systems or activities.

Software for infrastructures is likely to be distributed and concerned in particular with

supporting communication of information , people and/or materials. Hence issues of (for exｭ
ample) openness, timeliness, security, lack ofcorruption, and resilience are often important.8

2.3 “What is an Infrastructure ?"

We shall try answer this question in stages: First before we. bring somewhat substantial

examples; then, also partially, while bringing those examples; and, finally, in a concluding
section, Section 5.2 of this paper. The answer parts will not sum up to.a definitive answer !

2.3.1 An Analysis of the Characterisations

The World Bank characterisation,. naturally, is “steeped" in socio-economics. It implies, 1
claim, that what is characterised is well-functioning. It could, possibly, be criticised for
not giving a characterisation that allowed one to speak of well-functioning, and of not so

GDr. Jan Goo回enarts ， an early UNU/IIST Fellow, is to be credited with having found this cha町ra叫cter白a抗tion岨n.
7可In 七he '“'mi日id 1目99伺oγ since 七山ha叫t is what 1 c 岨 vouch f，お。r.
・ The above wording is due, 1 believe，七o Chris George, UNU/IIST.

14th of 匙~・1 2002 , 12:16 @ Dine. Bj.rner t P!-edn'吋 11 ， DK-2a40 Holtc , Den.mark. 200ト2002

r:39

r:40

T:3S

可F ‘ 1

T・3・ T

・2

7 ・3

r.J7

'T :J・

r:'"

10 SEA Seminar, Tokyo: - Informatics of In企astructures

well-functioning infrastructures. It cannot be used as a test: Is something presented an

infrastructure , or is it not ? And it begs the question: Can one decompose an infrastructure
d9 into parts, or 出 we shall call them , components ?

The U N U jllST characterisation, naturally, is "steeped" in systems engineering. It seems
we were more defining requirements to the business process engineering of an infrastructure

(component) , than the domain - which , as for the World Bank characterisation，出sumes a
concept of “good functionality."
We shall, despite these caveats, accept the two characterisations in the following spirit:
For a socio--economically well-functioning infrastructure (component) to be so, the characterｭ
isations of the intrinsics, the support technologies, the management & organisation, the rules
& regulations, and the human behaviour, must , already in the domain, meet certain “good

dO functionality" conditions.

That is: We bring the two characterisations together, letting the latter “feed" the former.
Doing so expresses a conjecture: One answer , to the question" “What is an in企astructureぺ is ，

seen from the viewpoint of systems engineering, that it is a system that can be characterised
using the technical terms typical of computing systems.

2.3.2 The Question and its Background

The question and its first , partial answer, only makes sense, from the point of view of the
computer & computing sciences if we pose that question on the background of some of the

dl achievements of those sciences. We select a few analysis approaches. These are 出pects of

denotational, concurrency, typejvalue, and knowledge engineering approaches, as well 踊 a

computer science approach.

T ・2

An important aspect ofmy answer, in addition to be flavoured by the above, derives from
the semiotics distinctions between: pragmatics, semantics, and syntax. So we will also discuss
this aspect below.

Denotational Engineering: In the denotational engineering view we associate to syntactic

entities a meaning expressed, usually as a mathematical function. Normally we would expect
the homomorphism lemma to apply: The meaning，ん1 ， of a simple,“atomic" entity, a, is a
simple function , M(α) 三 F(a). The meaning , M , of a composite entity, (Cl , C2 , . . ., cn) , is a
function，チl ， of the meaning of the 戸市 M(Cl' C2 ， . . . ， ら)三 1l(M(cd ， M(C2) , . • ., M(cn)).

d3 One may say that the denotational engineering view entails a model oriented view. For

mundane application domains such as railways, electronic commerce, health-care, logistics,
etc. , how do we apply the principle of denotational engineering? Well , we first look out
for suitable semantic types for the phenomena that we observe (viz. , Train traffic, traces of
behaviours, etc.) (値制ociated with syntactic phenomena, ie. types (viz., time tables, billｭ
--of-ladings (way bills), etc.)). Then we device of simple, primitive operations on semantic
values. Then we device of suitable syntactic abstractions. And finally we express the meaning

of the syntactic entities in terms of compositions of primitive operations.

T ・4

Concurrency Engineering: In a concurrency engineeIゴng view, not necessarily ‘the' view,
certain phenomena are seen, are abstracted 笛 concurrent1y progressing and communicating

processes, very much in the sense of CSP. [6 ,7, 8, 9] Processes - simple ones - are sequential:
Effecting, on• by-one changes to a process local state, while, now-and-then synchroIiising
with other processes, performing, as-it-were,“rendez-vous" with these and (usually one way)

@ Dinu Bj・rncr ， Predn'cj 11. DK-2840 Holte , Dcn皿町k ， 2001-2002 14th 01 M・1 200 2 , 12 ・16

A Future for Computing Science - Monday June 17th, 2002 11

communicating information . “Rendez-vous" model events. Similar characterisations can be
given for concurrency modelling using Petri Nets. Processes'P - not so simple ones - dS

may “split" (11) into parallel ones: 'P = 円 11 円 11 ...11 'Pn , or m可 decide (non-deterministic
external choice ， 日)， depending on external events, between either of n a1ternative proce蹴s:
'P = 'Pl 日 'P2 日. . . 日 'Pn ， or may decide (non-deterministic internal choice, m, depending on
internal “eventsぺ between either of πalternative processes: 'P = 'Pl n 'P2 n ... n 凡 . It is
these latter possibilities of non-deterministic choices, with their elegant algebraic laws, that
makes CSP so well suited to model human and technology behaviours of an actual domain.

CSP and Petri Nets provide a tool, and come with modelling techniques, with which to tackle
description of domains of infrastructure components.

TypejValue Engineering: By typejvalue engineering we mean the engineering of typed

information structures. In a view , not necessarily 'the' view, of typejvalue engineering -one
that is significant in the usually “paper laden" bureaucracies of the man-made, and oftentimes
public government operated or, at le笛t ， regulated infr描tructure enterprises - information,
in the form of documents of various kinds,“float" around the infr描tructure enterprises,
where this information may, or may not be structured, where it is subject to various kinds of
operations: “Readings'\edits (augmented updates) , deposits in repositories (folders, files) ,
copyings, creations, destructions, etc. , and where many other kinds of operationsmay be

T :“

performable. d7

More formally: There are types and values, and they relate:

type

TYP, VAL
value

typ: VAL • TYP

Values adhere to well-formedness, may be structured, and may be presented in m組y ways:

copied , time-stamped, located in space, or otherwise made unique. Their types may 児島ct

this, and operations creating values and operating upon values adhere to implied constraints:

value

wLTYP: TYP • Bool
wLVAL:VAL • Bool
create_VAL: TYP x VAL 与 VAL
create_VAL(t ,v) as v'
pre wLTYP(t) 八 wLVAL(v) 八 …
post wLVAL(t川vう
op: VAL x …x VAL 与 VAL
op(vl ,...,vn) as v
pre wLVAL(vl) 八…八 pre wLVAL(vn) 八…
post wLVAL(vl ,...,vn,v)

Typejvalue engineering typically applies denotational 回.gin目'ring principles and techniques.

We shal1 take a look at typejvalue engin館山19 phenomena in Section 4.

1“ h ofll直・7 2002 , 12:15 軍事... 司自町. Pred・.ej 11 , DK-1140 Holte , Derunarlt , 2001-2002

'T:4I

-r:SO

T':51

T':52

T':Sl

T: 5・

T:55

12 SEA Seminar, Tokyo: - Informatics of Infrastructures

Logics, Agents and Language-based Knowledge Engineering: There is the knowlｭ
edge engineering view. In one, of several variants, of this view - and we shall only cover
that variant, albeit ever so briefly - one focuses on logics, agent behaviours and speech acts.
The logics area has two facets to it: The classical logics which are part also of the deｭ

notational, concurrency, type system, and formal techniques facets described and 酪sumed

earlier, and the less classical logics of modal logics. Thus, by logics we here mean those of
the epistemic logics of knowledge & belief, the deontic logics of permission & obligation, the

dO modallogics of possibility & necessity, f3c. Other logics are relevant - also when describing
domains: dynamic logics of action, defeasible, uncertainty and possibilistic logics, logics of
belief revision, f3c. These are not just logics of AI and logic programming but also logics of
general domain engineering. Thus, to express understanding of phenomena in domains and

r:Sl “derived" requirements entail , we find , extensive use of modallogics.
We present what may be termed the AI approach to “agencyぺ but intend to “lift" the AI

"ag印cy" notions to apply, inter alia, to domain engineering 槌 well 酪 to software (requirト

ments and design). Agents interact through communication. Agents come in groups: Mu1ti
agent "systems". Agents perform both competitive and co-operative tasks. Open mu1ti

agent 泡ystems" have agents serve different interests, autonomously and heterogeneously.
d2 Just like humans! Agent interaction (alphabetically listed)9 involves arguments: Formation

of reasons, drawing of conclusions, and applying these activelYj commitments, conversations,
co-ordination, dialogue, negotiation, obligation, planning, f3c. In doing so agents deploy

dl various modallogics, and，描 we shall next see: Speech acts.

r:54

r:55

Speech acts are characterised by: Locutions - The physical utterances of speakersj illoｭ

cutions - The intended meaning of speaker utterancesj and perlocutions - The actions that

result from locutions. Wrt. iIlocutions, speech acts are often classified in the following five
perfor皿atives: Assertive, ie. statements of factj directive, ie. commands, requests or advicej
commissive, eg. promisesj expressive, eg. feelings and attitudesj and declarative which entail
the occurrence of an action in themselves. Obviously speech acts and agents relate strongly.

Speec

Computer Science: And then there is the computer science view: Computer science，国

claimed earlier, is concerned with the mathematical properties of the things that can exist
inside computers, and in particular with such things 踊 Computational models, complexｭ
ity, and types. Although phenomena of the infrastructure component domains are rarely
computable, one can still speak of functions , and of properties, although these might not be
computable or decidable. Hence the computer science view shall flavour the ways in which

we shall attempt to understand in仕掛tructure component domains.

Semiotics: Pragmatics, Semantics ~ Syntax: The semiotics engineering view 出cribes

primary importance to that which can basically not be formalised: The pragmatics, why we
do what we do , why we use certain linguistic constructs , why we ascribe certain meanings and
forms. The semiotics engineering view , on the basis of a clarified stand on pragmatics, then
proceeds to first think and act semantically: Searching for , finding , narrating and formalising

9The listing is extracted from my MSc student, Hans Madsen Petersen's MSc pre-project report: Agent
CommUDﾏcation Languages and Speech Acts -and theﾏr Semantics, October 2001.

@ Dine. Bj・rner ， Fred・ycj 11 , DK-2840 Holte , DenIllark , 2001-2002 1‘ th 01 1.εay 2002 , 12:16

r:49

A Future for Computing Science - Monday June 17th , 2002 13

“deepest" meanings, most abstract , elegant and beautiful. Finally the “semiotics engineer"
selects suitable syntactic forms to designate the meanings (and “cover" the pragmatics).
The semiotics engineering view is itself one of pragmatics,“meta-pragmatically'\it is , for T:56
example, applied in denotational 出 well as in typejvalue engineering

Discussion: There are other views. But the above su節目. Why we have 官one to the

trouble" of enumerating and briefly explain the above computing & computer science views
will now be revealed in the section which immediately follows.

2.3.3 A Third Atternpt at an Answer

A first concern of the socio-economics of infrastructures seems to be one of pragmatics: For

society, through state or local government intervention, either by means of publicly owned,
or by means of licensed semi-private enterprises, to provide infrastructure component me組S

for “the rest of society": Private people and private (or other public) enterprises, to function
properly. Depending on “ the politics of the day" provision of such means may, or may not be
subsidised. So efficiency and profitability of such infrastructure components were sometimes

T:57

not a main concern. The above observations certainly seems to have applied in the p笛t. T:S8

With the 吋vent of informatics, the confluence of computing science, mathematics (incl.
mathematical modelling) , and applications, with computerisation made possible by affordable
information technology, the business process r• engineering of infrastructure components 一
泊 made possible by domain modelling methods - forces 出 well as enables a new way of

looking at infrastructure components. We therefore recapitulate the U N U jllST view of T 日

infrastructures.

Computing systems for infrastructures 訂e distributed and concurrent , and are concerned
with the flow of information, people, materials,and control, and the manipulation of the
"flowed items" .

Concepts like denotations, concurrency, types, logics (including modallogics) , agents and
speech acts, computational models, and semiotics (pragmatics , semantics and synt砿) seems
to offer: a mind set associated with a vocabulary that “lifts" daily, short-range, and hence ofｭ
ten short-sighted re描oning ， and thus a framework for thinking about necessary infrastructure

7 ・0

process r←engmeermg. 剖

50 our “third try" at an answer to the question: “What is an In企astructure ?", is a
rather unconventional one: An infrastructure, as seen from the point of view of informatics
(mathematics Eﾐ computing science Eﾐ applications) , is a challenge: A class of systems that
we need characterise both from the point ofview of socio-economics, and from the point of
view of computing science, and to relate the two answers.

3 Work Flow Domains

3.1 Work Flows and Transactions

We exemplify four kinds of concrete work flow systems: railways, electronic business (Secｭ
tion 3.3) , freight transport logistics (Section 3め， and health-care. All exemplify the moveｭ
ment of information, materials and control. We now “自ip" through several examples of

domain descriptions. They are all re部onably substantial. But time does not permit us to

14th 01 Ma.y 2002 , 12:16 @ Dine. Bj.rner , Pre:dnej 11. DK-2'40 Holte , Denmark , 2001-2002

ず‘2
li.bo・1M・

T ‘3

T:64

T":6S

す“
T :‘7

-r : 6・

ず‘'

T:70

T:71

ch9r8ﾏ

T':72

T:63

T':U

T ・5

T:6‘
T ‘7

T:68

T':69

T':70

T':71

14 SEA Seminar, Tokyo: - Informatics of Infr踊tructures

dwell on anyone of them. 1 could have decided to show mere excerpts of formulas. Instead 1

"flip" quickly - while leaving paper versions of the foils for your perusal.

3.2 Railways

3.2.1 On Railway SysteDls

Colloquially speaking, a railway system consists of the rail net: Lines between stations, and
stations; lines and stations 酪 consistingof rail units: Linear, switches, crossovers, etc.; rail
units being in states, states implying the possibility of train movement along zero, one or
more paths of a unit; and the rail net thus definining open and closed routes around the

net, etc.; time tables and traffic: time tables prescribing train tra伍c: Movement of trains

along routes and over time , etc.; the rolling stock: carriages (passenger or freight) , locomo同
tives; trains being composable from these, etc.; planning and operation: Planning and actually
C訂rying out the insertion or removal of rail units , lines and stations; time table construcｭ
tion based on available andjor obtainable rolling stock, statistics and expectations of traffic;
planning and handling the composition and decomposition of carriages into assembliews and

trains; planning and executing the scheduled maintenance of carriages and assemblies; planｭ

ning and carrying out station, line, service facilities and train crew rostering further operations:
Passenger and freight inquieries, ticketing and reservation; etc. &c.
The railway domain thus is a multi-dimensional domain consisting of many, but highly

interrelated, iner-woven “sub-systems" .
Section 7 on page 51 illustrates, by figures , some of the above.

3.2.2 A Hierarchical Narrative: Nets, Lines, Stations and Units
出9，副1. A railway net consists of one or more lines and two or more stations.

T:72

2. A railway net consists of units.

3. A line is a linear sequence of one or more linear .units.

4. The units of a line must be units of the net of the line.

5. A station is a set of units.

6. The units of a station must be units of the net of the station.

7. No two distinct lines andjor stations of a net share units.

8. A station consists of one or more tracks.

9. A track is a linear sequence of one or more linear units.

10. No two distinct tracks share units.

11. The units of a track must be units of the station (of'tl凶 tr配k)

12. A unit is either linear, or is a switch, or a is simple crossover, or is a switchable crossover,
etc.

@ Dine. Bj・rner ， Pred..吋 11 ， DK-la40 H olte, Denm町k ， lOOl-200l 1 ・色h ol!.直&1 200 2, 12 : 1・

A Future forComputing Science - Monday June 17th, 2002 15

13. A unit has one or more connectors.A linear unit has two distinct connectors , a switch
has three distinct connectors, crossovers have four distinct connectors, etc.

14. For every connector there are at most two units which have that connector in common.

15. Every line of a net is connected to exactly two, distinct stations of the net.

16. A linear sequence of units is a non-cyclic sequence of linear units such that neighbouring

units share connectors.

3.2.3 A Formalisation: Nets, Lines, Stations and Units
type

N, L, 5 ， τr ， U, C
value

1. obs-.Ls: N • L-set ,
1. obs...ss: N • 5-set
2. obs_Us: N • U-set ,
3. obs_Us: L • U-set
5. obs_Us: 5 • U-set ,
8. obs_百s: 5 → U・set

12. is-.Linear: U • Bool,
12. is...switch: U • Bool
12. is...simple_Crossover: U • Bool,
12. is...switchable_Crossover: U • Bool
13. obs_Cs: U • C-set

value

16. lin..seq: U-set • Bool
lin..seq(q) ==
let us = obs_Us(us) in
'v' i :U ・ uεus =争 is-.Linear(u) 八

ヨ q:U. ・ len q = card us 八 elems q = us 八
'v' i:Nat ・ {i ，i+1} � inds q =争ヨ c:C ・
obs_Cs(q(i)) n obs_Cs(q(i+1)) = {c} 八
len q > 1 =争
obs_Cs(q(i)) n obs_Cs(q(len q)) = {}

end

&盟副B 伽ma1 uiOI田町enow given, not al1 !

aI偶凪

1. V a:N ・舗rd obø..Ls(n) 三 1 ，

1. V n:N • card obs...ss(n) と 2 ，

3. 'rJ n:N, }:L • }εobs_Ls(n) キ lin ...seq(l)

2・th of M.J' 2002, 12:16 <S) Dine. Bj.rner, Predu'ej 11, DK-2・・o Bolte, Denm・r. t 2001-2002

.,.:73

ch91・叫12

-r :7・

T:75

.，. : 7・

.,.:77

ch91・

司r :7・

'1':17

16 SEA Seminar, Tokyo: -Informat兤s of Infrastructures

7. 't/ n :N, 1,I/:L •
{1,n � obs_Ls(n) 八 1#11

=争 obs_Us(l) n obs_Us(l/) = {}

7. 't/ n:N, I:L , s : S ・

lεobs..Ls(n) 八 sεobs-.Ss(n)

今 obs_Us(l) n obs_Us(s) = {}

7. 't/ n:N, sl:s ・
{sl} � obs-.Ss(n) 八 s内'

=争 obs_Us(s) n obS_US(S/) = {}

8. 't/ s:S ・ card obs_Trs(s) 三 1

9. 't/ n :N, s:S, t:T ・

sεobs-.Ss(n) 八 tεobs_Trs(s) =今 linJòeq(t)

10. 't/ n:N, s:S, t ，e;T ・
sεobs-'ss(n) 八 {t ，e} � obs_Trs(s) 八 t拘'

=争 obs_Us(t)n obs_Us(り={}

14. 't/ n:N • 't/ c:C ・
cεU { obs_Cs(u) I u :U ・ uεobs_Us(n) }

=争 card{ u I u:U ・ uεobs_Us(n) 八 cεobs_Cs(u) }三 2

15. 't/ n:N ， 1 :L ・ lεobs..Ls(n) =争

ヨ sl:S • {sl} � obs-.Ss(n) 八 s向=今
let sus = obs_Us(s) , susl = obS_US(S/) , lus = obs_Us(l) in
ヨ u:U ・ uεsus ， u/:U ・ ul ε sus/ ， ull ，u九u ・ {ull ， u勺 ç lus •
let scs = obs_Cs(u) , scsl = obs_Cs(u/) ,
lcs = obs_Cs(ull

) , lcsl = obs_Cs(u勺 in
ヨ! c ， c/ :C ・ c 手 cl 八 scsn lcs = {c} 八 scsln lcsl = {c/}

end end

3.2.4 A Cornpositional Narrative: Unit States, Routes and Train Movernent
川/・叫 1. A path, p : P , is a pair of connectors, (c , c/), of some unit.10

2. A state ， σ : :E, of a unit is the set of al1 open paths of that unit (at the time observed).u
3. A unit may, over its operationallife, attain any of a (possibly smal1) number of different
states ω ， 0 .

4. A route is a sequence of pairs of units and paths 一

10 A path of a u且it designate that a traﾍn may move across the uni七 in ぬe direction 合om c to c'. We say
that the unit is open in the direction of the path.
11 The state may be empty: もhe unit is closed.

@D回目 Bj町田r， Pred..ej 11 , DK-2'fO Holte , Denm・rk ， 2001-2002 H由。f May 2002 , 12 : 1・

A Future for Computing Science - Monday June 17th, 2002 17

5. such that the path of a unitjpath pair is a possible path of some state of the unit , and
such that “neighbouring" connectors are identical.

6. An open route is a route such that all its paths are open.

7. A train is modelled as a route.

8. Train movement is modelled 描 adiscrete function (map) from time to routes such that

for any two adjacent times the two corresponding routes differ by at most one of the

following: a unit path pair h出 been deleted from (one or another end) of the open

routes, or (similarly) added , or both , or no changes - a total of seven possibilities
(i-vii).

3.2.5 A Formalisation: Unit States, Routes and Train Movement
type

1 P = C x C
2 E = P-set
3 0 = E-set
4 R' = (U x P) 事

5 R ={I r:R' • wLR(r) I}
7τ旨n=R

8 Mov = T 材置n

value

2 obs~: U • 2
3 obs_O: U • Q

5 wLR: R' • Bool
wf...R (r) 三

V i:Nat ・ iεinds r let (u ， (c〆)) = r(i) in
(c ，cう εU obs_O(u) 八i+1ξinds r =争
let C，(ピ' ，_))= r(i十1) in c' = c" end end

6 open...R: R • Bool
open...R(r) ==
V (u,p):Uxp • (u ，p)εelems r 八 pεobs~(u)

8 wf-.ll直ov: Mov • Bool
wfMov(m) == card dom m さ 2 八
V t ， t':T ・ t ，t' E dom m 八 t < t'
八~ヨ t":T ・ t"εdom m ̂ t < t" < t' キ
let (r ， rう= (m(t) ，m(り) in clauses (i) ー (vii) end

3.2.6 Discussion

On the basis of domain models like the above we have worked out requirements ， 組d ， inc酪es ，

the design of software for:

2 ・‘h of 勤f・1 2002 , 12:16 @Dine・ Bj町ner ， Fred..ej 11 , DK-2."O Holte , Denmark, 2001-2002

T:78

T:79

εht!".il・

7 ・2
..:・0

7 ・1

7":'3

18

TltI1es->

Slati開 A

Station B

Sta垣間 C

stati側 D

お泌冊 E

stati冊 FI ，ー ー ー

ω

‘'

t1

, ,

SEA Seminar, Tokyo': - Informatics of Infrastructures

, ,

守司. - - - ~ -ー-ー'

一
,

也 日

F 一一一一一一一 一、一 ー一'

一
、

14 t5

Figure 1: A Running Map

“' ' ‘、,

,

情

Lニニ I sA

SB

sc

50

sE

SF

17

1. Running Maps: A UNUjl/ST project for the Chinese Railways. Rescheduling trains when
T畑 delayed.

7 ・3

2. Marshalling: The planning of 合eight train decomposition and composition. An ongoing

project.

A Railway Marshalling Yard

-寸HEYARO"

Misc. Misc.

IN
OUT

HUMP

Miscellaneous Sidings

Figure 2: A Freightτ'raîn Marshalling Yard

Figure 2 shows a marshalling yeard. The ‘'hump" is to be thought of as located in the
highest point in the terrain. “The Yard" tracks are all to b� thought of as sloping down,
away from the hump, in direction left-to-right.

@ Dinu Bj・rncr ， Pred..ej 11. DK-2・‘o Holte , Denm町Ì ， 2001-2002 1“ h of May 2002, 12:16

A Future for Computing Science - Monday June 17th, 2002 19

3. Crew Rostering: Albena Strupchanska et a1.: An AMORE12 Project. Periodic allocation

and scheduling of staff to passenger trains, based on a Dutch Railways' case study.

4. Passenger Train Composition , Decomposition and Shunting: Panagiotis Karras et a1.: An
AMORE Project. Addition of and removal of carriage assemblies from “running" trains,
based on a Dutch Railways' case study.

5. Passenger Train Maintenance Planning: Martin Penicka et a1.: An AMORE Project. Planｭ

ning day or night , at station, or between station, exchange of train assemblies in prepa-
ration for visits to maintenance stations, based on a Dutch Railways' case study. ・・

6. Control of Single Line Traffic: Anne Haxthausen and Jan Peleska: FM99. A problem of

German private local railway companies.

7. Station Interlocking: Kirsten Mark Hansen PhD Thesis.

8. Railway Level Crossing: Jens Ultik Skakkeb詭 PhD Thesis.

And many other railway related projects.

3.3 Electronic Administration and Business

We generalise a concept of electronic trading to apply across a full spectrum of Government

institutions, 9, businesses (enterprises) , B, and citizens, C. and thus to include 出血II a

variety of 929, 92B , 92C , B29 , B2B , B2C , C29 , C2B , C2C , transations.

SEllER

ゆBuyer閉山 $剖耐耐i岨ve

。。畑山a醐鳩山ぽ

Figure 3: “Classical" E-Trading 官ansactions

12 AMORE: Algorithmic Methods for Optimising Railways in Europe

1 ・‘h of 勘!I&J' 2002 , 12:16 @ Dinel Bjerner , P'redn'ej 11, DK-2S40 Holte. D叩mad::. 2001-2002

T":85

l i.b・./-..1・.mkt

T:86

T:87

T:88

T:89

T 軒

-r:9

T:9:

20 SEA Seminar, Tokyo: - Informatics of In企astructures

In the case of the government , business and citizen infrastructur.e interactions we can
postulate the following domain , ie. not necessarily computer & electronic communication
supported , transactions:
g2g: Government institutions, g , buy services from other g , and 9 sell services to other
g. The 9 pay with monies (obtained through taxes, etc .) , respectively offer free services, in
return. g28: 9 buy services, or request taxes, from businesses (8) , and pay, respectively
offers free services, in return. g2C: 9 buy services (hire), or request taxes, from citizens

T 帥 (C) ， and pay, respectively offer free services, in return. 82g: Businesses (8) buy services
from g, and pay 9 for these either through having already paid taxes or by paying special
. fees. 828: 8 buy merchandise Or services from other 8 , and 8 offer merchandise or services
to other 8. 8 usually pay for these outright. 82C: 8 buy services from citizens: ie. hire

柵 temporary or permanent staff (employment) , and 8 pay for these through salaries. C2g:

T:90

T:91

Citizens (C) obtain services from 9 (passport , drivers licence, etc. , health-çare, education,
safety and security, etc.) and C pay for these either by paying special fees or through having
already paid taxes. C28: C buy merchandise from 8 , and C pay for this. C2C: Two or more C
together enter into political “gr出s-root" organisations, or leisur• time hobby club activities ,
or just plainly arrange meetings (incl. BBQ parties); and the two or more C “pay" for this by
being “ together" .

3.3.1 Traders: Buyers and Sellers

Above we have stressed that also government (institutions) are part of the more general

concept of E-Business , some 出pects of contractual obligations, and a seeming “symmetry"
between partners to any such contract (ie. buy, sell , etc.). As such we have stressed that “The
Market" consists of buyers and sellers, whom we, as one, refer to as traders.

3.3.2 Traders: Agents and Brokers

An agent, to us, while we are still only discussing the domain , is a trader that acts (in a
biased manner) ーon behalf of usually one other trader (either a buyer , or a seller) , vis-a-vis
a number of other traders (sellers, respectively buyers) , in order to secure a “best deal". A
broker, to us, wnile we are still only discussing the domain , is a trader that acts (in a neutral
manner) on bel叫fone or more buyers and one or more sellers in order to help them negotiate

a “dea1."

3ふ3 ScheIllatic Transactions

Sequences of contractual transactions can be understood in terms of “primitive" transactions:
A buyer inquires as to some merchandise or service. A seller may respond with a quote.

A buyer may order some merchandise or service. A seller may confirm an order. A seller

may deliv:er an order. A buyer may accept a delivery. A seller may send an invoice. A

buyer may pay according to the invoice. A buyer may return , within warranty period , a
T 目 delivery. And a seller may refund such a return.

We'have, deliberately, 'used the “hedge" 'may':
A trader may choose an action of no response , or a trader may inform that a transaction

W出 misdirected ， or a trader may decline to quote , order , confirm , deli ver , accept ,
pay or refund

@ Dine. Bj.rner, Predn'ej 11 , DK-2840 -Uolte , Denm町k， 2001-2002 14色h of May 2002 , 12:16

A Future for Computing Science - Monday June 17th, 2002 21

3.3.4 Forlllalisation of Syntax
T:93

type

Trans == Inq I Ord I Acc I Pay I Rり
Qou I Con I Del I Acc I Inv I Ref

NoR I Dec I Mis

-r:96

The first two lines list the 'buyer', respectively the 'seller' initiated transaction types. The
third line lists common transaction types.

U below stand for unique identificatio民 including time stamps (T). Sui for surrogate

information, and MQP alludes to merchandise identification, quantity, price. T:94

U, T , Su1 , Su2, MQP
Inq = MQP x U

Qou = (InqISu1) x Inf x U

Ord = QoulSu2 x U

Con = Ord x U

Del = Ord x U
Acc = Del x U

Inv = Del x U

Pay = Inv x U

Rej = Del x U

Ref = Pay x U

NoR = Trans x U

Dec = Trans x U

Mis =τ'rans x U
value

obs_T: U • T

T:91

-r:98

In general we model, in the domain , a “subsequent" transaction by referring to a complete
trace of unique, time stamped transactions. Thus, in general, a transaction “embodies" the
transaction it is a manifest response to, and time of response.
Figure 4 attempts to illustrate possible transaction transitions between buyers and sellers.

T:9S

Eレ

BUYER
ci

SElLER ー+ -吟

- a・，

'=・- '='

一…
ゃー +-
・:同・.. ・-同・--. - ー恒明白・ ー-欄ak聞・.

-‘
綱島国 噛圃

，
，/

f
l
i
-
-
、、
、

Eヰ

〈、，町園自 由幽嗣

.，""""..一 ー+由一一一+・
Figure 4: Buyer / Seller Protocol Figure 5 : τ旨ader=Buyer+Seller

1 ・色h of M&J' 2002 , 12:16 @ Dinu Bj・rner. Pr'ed....εj 11. DK-2S40 H olte , Denmarlt. 2001-2002

22 SEA Seminar, Tokyo: - Informatics of In企astructures

3.3.5 “The おiJarket"

Figure 5 attempts to show that a trader can be both a buyer and a seller. Thus traders

“alternate" between buying and selling, that is: Between performing 'buy' and performing
"" 'sell' transactions.

T:97

Figure 6 attempts to show “an arbitrary" constellation of buyer and seller traders. It
highlights three supply chains. Each chain , in this example, consists, in this example, of a
“consumer" , a retailer , a wholesaler , and a producer.

(EXilmple Supply Cha仰'5: ABCG, HDBF, BG.且E， ...)

Figure 6: A Network of Traders and Supply Chains

3ふ6 Forrnalisation of Process Protocols

“The Market" consist of n traders, whether buyers, or sellers, or both; whether additionally
agents or brokers. Each trader Ti is able , potentially to communicate with any other trader
{Tl ， ・ ・ 1π- 1， Ti+l ， ・ ・. ， Tn}. We omit treatment of how traders come to know of one another.
We focus only on the internal and external non-determinism which is always there, in the
dom ain , when transactions are selected, sent and received.

d8 Our model is in a variant of CSP. but expressed “within" RSL [5].

type

o
Idx = {Il..n I}
value

sys: (Idx 対 e) x n:Nat • Unit
sys(mB ，n) 三 11 { tra(i)(mB(i)) 1 i:ldx }

tra: i:Idx •@•
in {tc[j ,i]lj :ldxoi#j} out {tc[ij]U:ldx・i到} Unit

tra(i)(B) 三回(i)(nxt(i)(B))

nxt: i:ldx → θ →

in {tc [j ，i]U:Id別式j} out {tc[ij] U:Idxoi#j} e
nxt(i)(B) 三

let choice = rcv n snd in
cases choice of

rcv• receive(i)(B) , snd• send(i)(B)
end end

@ Dines Bj・rner . Pred....町 11 . DK-2840 Holtc, Dcnmark , 2001-2002 1 ・‘h of May 2002. 12:115

A Future for Computing Science - Monday June 17th, 2002 23

Annotations: The system is the parallel combination of n traders. Traders communi- ず 99

cate over channels: tc戸JJ-from trader i to trader j. Each trader is modelled 出 a process

which “goes on forever" , but in steps of next state transitions. The next state transition
non--deterministically (internal choice, n) “alternates" between exp民間ng willingness tωO 問

celve町， respectively d由es釘Ir陀e to send. In “real life" , ie. in the domain , the choice 括 to which

transactions are taken is non-deterministic. And it is an internal choice. That is: The choice

is not influenced by the environment.

Forlllalisation:

receive: i :ldx → θ → in {tc (j，i]lj:ld別手j}e
receive(i)(8) 三

日 {let msg=tc(j,i]? in
叩dateJ"cv...state(msgj) (θ) endlj:ldx}

updateJ"cv...state: i:ldx x e •@

Annotations: 13 updateJcv...state is not a protocol function. updateJcv...state (not shown)

describes the deposit of msg in a repository of received messages. If msg is a response to an

earlier sent transaction , msg_o, then updateJcv...state describes the removal of msg_o from
a repository of sent messages. remo陀...sent且sg (not shown) models the situation where no

T:I00

response (nor) is (ever) made to an earlier sent message. Once the internal non寸eterministic 叫l
choice (n) has been made: Whether to receive or send, the choice 描 to whom to 'receive

from' is also non-deterministic, but now external (日). That is: receive expresses willingness
to receive from any other trader. But just one. As long 描 no other trader j does not send

anything to trader i that trader i just “sits" there,“waiting" - potentially forever. This
is indeed a model of the real world , the domain. A subsequent requirement may therefore,
naturally, be to provide some form of time out. A re-specification of receive with time out is
a correct implementation of the above. ...,102

send: i:ldx •@• in {tc[ij] Ij :ldx・4j} θ
send(i) (8) 三

let choice = ini n res n nor in
cases choice of

1m • sendjnitial(i) (8) ,
res • sendJ"esponse(i)(8) ,
nor • removeJ"ecei vedJllsg (8) end end

Either a trader, when communicating a transaction , chooses an initial (ini) one, or chooses
one which is in response 什es) to a message received earlier , or chooses to not respond (noり
to such an earlier message The choice is again non-deterministic internal. In the last c出e

the state is updated by non-deterministically internal choice (not shown) removing the, or
an earlier received message.

13Please note that we are not always RSL “conformant": The receive signature deploys a non-standard
‘dependent' type usage: The leftmost i binds the following is.

u色h ofM・y 2002 , 12:16 @ Dine. Bj・rner ， Predl'"町 11 ， DK-2140 Holte , Denrnark , 2001-2002

ず 103

T:l(

24 SEA Seminar, Tokyo: -Informatics of In企話tructures

Note that the above functions describe the internal as well 槌 theexternal non-determinism

of protocols. We omit the detailed description of those functions which can be claimed to

not be proper protocol description functions - but are functions which describe more the

T: IO・ particular domain at hand: Here “The Market" .

send-.initial: i:Idx → θ → out {tc[ij JIj :ldxoi到}e
send-.initial(i) (8) 三

let choice = buy n sell in
cases choice of

buy • send -.init_buy(i) (8) ,
sell • send -.iniLsell(i)(8) end end

sendJesponse: i:ldx •@• out {tc[ij] Ij :Idx・iヂj}e
sendJesponse(i) (8) 三

let choice = buy n sell in
cases choice of

buy • sendJes_buy(i)(8) ,
sell • sendJes ..sell(i)(8) end end

In the above functions we have, perhaps arbitrarily chosen, to distinguish between buy and
sel1 transactions. Both send-.initial and sendJesponse functions 一泊 wellas the four auxiliary

T:IOS functions they invoke - describe 酪pects of the protocol.

send-.iniLbuy: i:ldx •@• out {tc[ij JIj :ldx・i#j}e
send -.in札buy(i)(8) 三

let choice = inq n ord n p可 n ret n… in
let (j，msg ，8~ = preparejniLbuy(choice)(i)(8) in
tc[ij] !msg ; 8' end end

send-.init..sell: i:ldx → θ → out {tc[ij] Ij:lむがj}e
send-.init..sell(i) (8) 三

let choice = quo n con n del n inv n… in
let (j ，msg ，8~ = preparejnit..sell(choice)(i)(8) in
tc[ij] !msg ; 8' end end

prepare-.iniLbuy is not a protocol function , nor is prepare-.init...sel1. They both assemble an
initial buy, respectively sell message, msg, a target trader, j , and update a send repository

T:I06 state component

se吋Jes_buy : i :ldx → θ → out {tc[ij] Ij :Idxoi#j} e
sendJes_buy(i) (8) 三

let (8' ,msg) =seL:叩date_b町..state(8) ，
j=obs_trader(msg) in

let (8" ,msg') = response_buYJllsg(msg)(8') in
tc[ij] !msg'j 8" end end

sendJes..sell: i:ldx •@• out {tc[ij]lj:ldx吋#j}e

@ Dine. Bj・rner ， Pred・yej 11 , DK-l8"O Holtc , DenDl&r lc:, 2001-2002 1 ・‘h of Ma,. 2002 , 12:16

A Future for Computing Science - Monday June 17th, 2002

sendJes-Bell(i)(B) ==
let (B' ,msg) =sel...:叩date-Belbt ate(B) ,
j=obs_trader(msg) in

let (B" ,msg') = response-BelLmsg(msg)(B') in
tc[ij 1 !msg'; B" end end

25

seLupdate_buy...state is not a protocol funct ion , neither is seLupdate...sell...state. They both
describe the selection of a previously deposited , buy, respectively a sell message, msg, (仕om
it) the index, j , of the trader originating that message, and describes the update of a received
messages repository state component. response...sell...msg and response_buy...msg both effect ...:107
the assembly, from msg, of suitable response messa伊， msg. As such they are partly protocol
furictions. Thus, if msg was an inquiry then msg may be either a quote, decline, or a
misdirected transaction message. Etcetera.

3.3.1 Requirements

Projection Synopsis: We focus only on the communication between traders. We basiｭ

ca11y ignore the “content" of any transaction, and sha11 instead focus on automating certain
sequences of transactions.

Instantiation Synopsis: Whereas the domain model of traders w回 a model, essentia11y,
intrinsically, of human operations, we now try to automate as much as possible the response

..，. :10・

to received transactions. Thus， 酪 an example: (1) If a consumer order can be delivered by ... : 1帥

the retailer, without human (retailer staff) intervention, it will be done so. (2) If a consumer
order cannot be delivered by the retailer, but that retailer can re-order from a wholesaler,
who can deliver - both atomic transactions without human (retailer and wholesaler staff)

intervention, it will be done so. (3) And if a consumer order cannot be delivered by the
retailer, but that retailer can re-order from a wholesaler, who then cannot deliver, but must
r• order from producer, who can deliver - a11 atomic transactions without human (retailer,
wholesaler and producer staff) intervention , it will be done so. Figure 7 attempts to show ...:110
the three cases listed above. There might be delays, waiting times, between order receipt and
delivery and/or

c。健闘帽 R 悔， WIM晦園崎e 町叫UCOf

d
由 cl or薗

d

.1 a・.

c2 I
.1

-酬明e

c2 h婦別留

cl

-凶-
... 明町

し一
~5&明町4四CIsos:(cl)助叫同咽柚曲。 同jll同町衛酬拘咽四

Figure 7: E-Business “Supply" Chain

14th of 為4・y lOOl , ll:16 @ Dinea Bj.rner , Predn'ej 11 , DK-2a4.0 Holte, D叩mark ， 2001-2002

r:llj

..,.:113

"，， : 11・

li.boa

r:115

T: ll・

26 SEA Seminar, Tokyo: - Informatics of In企部truct ures

Extension Synopsis: We introduce electronic traders and brokers. They permit arbitrarｭ

ily wide i珂uiries: Potentially to all prov地rs (retailers, wholesalers, or producers) ofspecified
merchand悶 (or services) , offers (“confirmatioぱ') of merchandise (or services) to all “ tak­
ers" (consumers , retailers, or wholesalers) , first-com• first serve (“auction" -like) orders, f3c
These roughly sketched domain requirements are considered extensions 出 they might not be

humanly feasible in actual domains.

Initialisation Synopsis: Due to our projection we need only consider how traders, agents
and brokers initially, and in an ongoing way, come to know of one another. We omit details
- "left as an exercise".

3.3.8 Discussion

There is an urgent need to bring semantics to bear on electronic transactions, to study the
spectrum of Q, ß , and C inter-and intra-transactions, and to apply modallogics and speech
act theories to automated fami1ies of autonomous agents and brokers. We believe that we
first need establishing models like the above in order go on with these urgent studies.

3.4 Logistics

li.b叫，，111叩 The ability to transport freight from well-nigh any spot on the globe to well-nigh any other

spot on the same globe is a test of 勺Iß企a-structure-hood".

T:115

The term ‘logistics' is here taken to cover an ability of managing the interfaces between:
clients who send and receive freight items with logistics firms who organise the transport and

deal with transport companies who offer transportation by means of conveyors with whom

they also interface; and with hubs where various kinds of conveyor types congregate. We first

narrate some facets of logistics, then suggest a formal model.

3.4.1 Informal View

Freight 宣旨ansport: Freight transport，部 abstractlydesignated by Figure 8, may evolve by
means ofvarious conveyors: from truck (A• B) to train (B•C) to ship (C• F) to train (F• G)
and finally by truck (G• H). Intermediate transfer places are called hubs: Truck terminals,
railway stations, harbours and airports.

1 日目

巴E

Figure 8: A Freight Transport

t ‘ 1 ・
一三~ ..

， .. 、、、r岡、

二・ー・，-ー­J 川

一一

一I!<l¥
巨司 -,..

巴呂

匡司

;y'[!!J

Figure 9: Part of a Logistics Net

A bill-of-ladi時 (BoL ， see Figure 10) describes the composition of individual transports (ab,
bc, cf, fg , and gh).

@ Dine. Bj.rner. Pred..ej 11, DK- 1・40 Holte, Denmark, 1001-2002 14t.h 01 M&J' 2002 , 12 ・ 16

-r:lll

T :ll‘

A Future for Computing Science - Monday June 17th , 2002 27

Logistics Nets: Many routes composed from different kinds of conveyors between hubs are

normally possible. Figure 9 indicates alternative routing between hubs (here B and G).

A Freight Transport Trace: To manage freight transports logistics firms need be able

to trace the whereabouts of freights. Figure 10 indicates (by bullets ・)“interesting" points:

When freight enters first hub (once) , when it leaves a hub on a conveyor (five times) , when it
is on a conveyor (five times) , when it enters a hub from a conveyor (日ve times) , and when it
finally leaves a hub for a receiver (once).

Figure 10: The Trace of a Specific Transｭ
port

Timet

吋
�0'1.

�...
'9 ;:
" u.

Figure 11: A State of a Logistics Net

The Dynamic State of A Logistics Net: At any one time many items offreight are being

transported on a diversity of conveyors between many (pairs of) hubs. Figure 11 indicates,
for an arbitrary point in time, t , such a state of freigl巾 (the bullets ・) and conveyors (the

vertically oriented rounded “boxes" “containing" zero, one or two ・s.

We now model a logistics system consisting of clients (senders and receivers of freights) ,
logistics firms (which arrange transport for clients) , transport companies which own conveyors,
and hub (enterprises). We model each of these (clients, firms , companies , conveyors and hubs)
槌 processes.

Clients: Clients (potential senders) i叫uire with Logistics Firms for virtual BoLs - these

町e like quotes - and receives possibly several such in return. Clients (senders) deliver

(typically with a virtual BoL 槌 reference) to Logistics Firms actual Cargo and receives Copies

of a relevant , unique BoL. Clients (senders and/or receivers) inquire 出 to the whereabouts (a

trace) of some cargo based on a/the Copy of its BoL and receives trace information. Clients

(receivers) receive (“out of the blue" , but most likely expectedly so) information that a Cargo
is to be picked up at the Logistics Firm山 Clients (receivers) Fetch arrived Cargo.

Logistics Firms: The Logistics Firm to Client interfaces have already been described

above.

Logistics Firms deliver one or more (possibly, or most likely unrelated) Cargo including
their BoLs to Hubs. Logistics Firms receive notification from Hubs that initial Hub and/or

intermediate Hub Cargo has departed on a Conveyor (onto which it has been loaded). Logisｭ

tics Firms receive notification from Hubs that intermediate Hub and/or final Hub Cargo has

ltyou may wish to model also or instead the option or alternative that 七he Logistics Firm delivers the cargo
to Client (receiver)

l"tb 01 May 2002 , 12:16 @D四回目jørner ， F'red ... ，町 11. DK-2a..o Holte. Denmark , 2001-2002

-r:1l7

'T:118

'T:1l9

T:120

28 SEA Seminar, Tokyo:・ - Informatics of Infrastructures

arrived - and if final , that it can be fetched. Logistics Firms Fetch finally arrived Cargo.
Logistics Firms request Time and Fee Table Information from Transport Companies and reｭ

ceives such information. Logistics Firms inquire 描 to Availability for (Cargo , departure, etc. ,
specified) Cargo space and receive temporary confirmation of such (or later, close in time,
etc.) space and conditions, or unavailability of space. Logistics Firms bindingly reser刊 Cargo

space on designated departures, etc.

Transport Companies: The Transport Company to Logistics Firm interfaces have already

been described above.

The Transport Companies receive information from their Conveyors that (such and such)

Cargo has been unloaded at a Hub. The τransport Companies receive information from

their Conveyors that (such and such) Cargo has been loaded at a Hub. And hence that the

conveyors has been at a hub.

Hubs: The Hub to Logistics Firm interfaces have already been described above.

The Hubs receive, hence unloaded, Cargo , from Conveyors. The Hubs delivers, hence
load, Cargo, to Conveyors.

Conveyors: The Conveyor to Hub interfaces and the Conveyor to Transport Company

interfaces have already been described above.

Hence there is no more to describe concerning external interfaces.

3.4.2 System Formalisation

There seems to be just the following ペplayers" (See Figure 12): Clients, logistics firms , transｭ
port companies, hubs, and conveyors , modelled 描 processes (ie . 槌 behaviours) ， and 吋nter­

faces" Clients tojfrom logistics firms , logistics firms tojfrom transport companies and tojfrom
hubs , transport companies tojfrom conveyors and tojfrom hubs, and conveyors toj丘omhubs.
modelled in terms of channel communications.

Figure 12: Process and Channel Graph of a Logistics System

@ Dinu Bjerner , Fred.yej 11 , DK-21.0 Holte , Den.mar lr:, 2001-2002 14th of May 2002, 12:16

r:125

A Future for Computing Science - Monday June 17th, 2002

States:

type

KIdx, LIdx, TIdx, HIdx, CIdx
KE , LE , TE , HE , CE
KEM = KIdx 討 KE ， LEM = LIdx 討 LE
TEM = TIdx 討 TE ， HEM = HIdx 討 HE
CEM = CIdx 討 CE
value

kEm:KEM, lEm:LEM,
tEm:TEM ,' hEm:HEM ,
cEm:CEM

SysteIn Process:

sys: Unit • Unit
sysO 三

11 { cli(i)(kσm(i)) 1 i:KIdx } 11
11 { log(i)(lum(i)) 1 i:LIdx } 11
11 { tra(i)(tσm(i)) 1 i:TIdx } 11
11 { hub(i)(hσm(i)) 1 i:阻む} 11
11 { con(i)(cσm(i)) 1 i:CI也}

Transaction Message Types:

type

MKL =…, MLK= …,
MLT= …, MTL= …,
MLH =…, MHL= …,
MHC= …, MCH= …,
MTC= …, MCT=

Channels:

channel

We do not detail the concrete types of messages.

{ ckl[k ,l] 1 k:KIdx, l:LIdx } MKL,
{ clk[l判 1 k:KIdx, l:LIdx } MLK,
{ ctl[t ,l] Il:LIdx,t:TIdx } MTL ,
{ clt[l ,t] Il:LIdx, t:TIdx } MLT ,
{ chl[h ,l] Il:LIdx,h:HIdx } MHL ,
{ clh[l ,h] Il:LIdx, h:HIdx } MLH ,
{ chc[h,c] 1 h:HIdx, c:CIdx } MHC ,
{ cch[c判 1 h:HIdx, c:CIdx} MCH ,
{ ctc[t ,c] 1 t:TIdx, c:CIむ }MTC，
{ cct[c,t] 1 t:TIdx, c:CIdx } MCT

29

M出。fM.叩 2002 ， 12,16
@ Dinc. Bj.rner. Pred'Tcj 11 , DK-2S"O Holte , Derunark , 2001-2002

T:l

T:126

T:l

30 SEA Seminar, Tokyo: - Informatics of Infrastructures

3.4.3 Client Forlllalisation

Client Types:

type

BoL

MKL == Inq_BoL I VBoL
I Delivery I CBoL
I Inq_Trace I Trace
I Received I Fetch I Cargo

Inq_BoL:: VCargo x HIdx x HIdx x Qual-set

Qual == fastest I shortest I cheapest I reliably I safest I …

VBoL

Delivery :: RCargo x HIDx x HIdx x Qual-set x VBoL
CBoL

Inq_τ'race :: CBoL
Trace

Received :: LIdx x CBoL
Fetch :: CBoL

RCargo

VCargo
value

obs_VBoL: BoL • VBoL
obs_CBoL: BoL • CBoL
obs_VCargo: RCargo • VCargo

Client Auxiliary Functions:

type

τ'race

Inq_PredJ:nfo :: LIdxxVCargoxHIdxxHIdxxQual-set

Dlvr-.PredJ:nfo :: LIdxxRCargoxHIdxxHIdxxQual-setxVBoL
TraceJ>redJ:nfo, FetchJ>redJ:nfo :: LIdxxCBoL
Inq_UpdaJ:nfo :: Inq_PredJ:nfoxVBoL-set

DlvLUpdaJ:nfo :: Dlvr-.PredJ:nfoxCBoL
Trace_UpdaJ:nfo :: τ'racexCBoL

Received :: LIdx x CBoL

Cli-.PredJ:nfo = Inq_PredJ:nfo I Dlvr-.PredJ:nfo
|τ'race-.PredJ:nfo I Fetch-.PredJ:nfo

Cli_UpdaJ:nfo = 1珂_UpdaJ:nfo I DlvLUpdaJ:nfo
I Trace_UpdaJ:nfo I Received

value

cli_pred: CliJ>redJ:nfo • KE • Bool
clLupda: CILUpdaJ:nfo • KE • KE

@ Dinu Bj.rner , Pred..ej 11 , DK-2840 Hohe , Denmarlr:. 2001 2002 1 ・‘h of May 2002 , 12:16

-r:129

A Future [or Computing Science - Monday June 17th, 2002

Client Processes:

value

cli: i:KIdx • KE •
in,out { ckl[i,l] Il:LIdx }
in { clk[l ,i] I l:LI也} Unit

cli(i)(kσ) 三

let ku' = (inq(i)(kσ) ndlvr(i) (kσ) 日 trace(i)(kσ)nfetch(i) (kσ))
n rcvd(i)(kσ) in

cli(i)(ku1 end

inq: i:KIdx • KE • in,out { ckl[i,l] Il:LIdx } KE
inq(i)(kσ) 三

let ipi=mk3nq-Pred3nfo(l，vc ，fムqs):I叫..Prd3nfo

• clLpred(ipi)(kσ) in
ckl[i,l] ! mk3nqßoL(vc,f,t ,qs) ;
let vbols = ckl[i ,l] ? in cli_upd(mk3nq_Upd(ipi ，vbols))(kσ)
end end

dlvr: i:Kldx • KE • in,out { ckl[i,l] Il:LIdx } KE
dlvr(i)(kσ) ==

let dpi=(l,rc,f,t ,qs ,vbol) :Dlvr ..Predjnfo
.cl叩red(dpi)(kσ) in

ckl[i,l] ! mk j)elivery(rc ,f,t ,qs,vbol) ;
let cbol = ckl[i ,l] ? in clLupd(mkj)lvLUpd(dpi ，cbol))(kσ)
end end

trace: i:KIdx • KE • in,out { ckl[i刈 I l:LIdx} KE
trace(i)(kσ)==

if ヨ cbol :CBoL • clLpred(mLTrace_Pred3nfo(l，cbol))(kσ)
then

let tpi=mLTrace..Pred3nfo(l ，cbol) :τ'race3nfo

• Ltrace_pred(l ， cbol)(kσ) in
ckl[i,l] ! mk3nq_ Trace(cbol) ;
let mk_Trace(trace) = ckl[i,l] ? in
clLupd(mk_τ'race_Upd(trace ，cbol)) (kσ)
end end
else kσend

rcvd: i:KIdx • KE • in { clk[l ,i] Il:LIdx } KE
rcvd(i)(kσ) 三

let rcvd =日{ clk[ね]? Il : LI也} in
cli_upd(rcvd)(kσ)

end

fetch: i:KIdx • KE • in,out { ckl[i,l] Il:LIdx } KE

31

1 ・色b of May 2002 , 12:16 @ Dincs Bj.rner , Pred..ej 11 , DK-2."O H olte , Den皿・rk ， 200ト2002

T:1l0

T:l

T:131

T:132

32 SEA Seminar, Tokyo: -Informatics of 1I叶泊tructures

おtch(i)(kσ) 三

let fpi=mk-.FetdしPred -.lnfo(l ,cbol) :Fetchj>red-.lnfo
• clLpred(fpi)(kσ) in

ckl[i,l] ! mkYetch(cbol) ;
let rcargo = ckl[i,l] ? in
cli _u pd (mkYetch_ U pd (fpí, rcargo)) (kσ)
end end

3.4.4 Logistic Firm Formalisation

Function Types:

value
ljnq_vbols:

VCargo x HIdx x HIdx x Qual・set → LE → VBoL-set

ljnq_upd:

KIdx x VCargoxHIdxxHIdxxQual-set • LE • LE
Ldlvr_cbol:

(RCargoxHIdxxHIdxxQual-set) xVBoL • LE • CBoL
LdlvLupd:

(RCargo x HIdxx HIdxx Qual-set) x (CBoL x VBoL) • LE • LE
Ltrace:

CBoL • LE • LE
Ltrace_upd:

CBoLx百配e → LE → LE

Lfetch:

CBoL • LE • Cargo
Lfetch_upd:

CBoL x Cargo • LE • LE
Lrcvd:

LE • Receíved
Lrcvd_upd:

KIdx x CBoL • LE • LE

Logistics Firm Processes:

value

log: l :LIdx • LE •
in,out { ckl[i,l] 1 �:KIdx }
out { clk[l ,i] 1 i:KIdx }
in,out { clh[í刈 1 i:HIdx }
in,out { chl[l ,í] 1 �:HIdx }
in,out { clt[í,l] 1 �:Tldx }
in,out { ctl[l ,i] 1 �:TIdx } Unit

log(l)(lσ) 三

@ Dinu Bjørner, Predlyej 11 , DK-2140 Bolie , Denmark , 2001-2002 1 ・‘h of M.y 2002 , 12:15

A Future for Computing Science - Monday June 17th, 2002

let lσ

cliJog(l)(lσ) n log_cli(l)(lσ)
日 logJlUb(l)(lσ) 日 log_tra(l) (lσ) in

log(l)(lσ') end

Client Initiated • Logistics Firm Transactions:

value

cliJog: l:LIdx • LE •
in,out {ckl[i,l]1 i:KIdx} out { clk[l,i]I i:KIdx} Unit

cliJog(l)(lσ) 三

let lσ

日{ let msg = kl[i,l] ? in
cases msg of

mk.1nqßoL(vc ，fムqs) →

let vbols =むnq_vbols(vc ，f， t ，qs)(lu) in
kl[i,l]!vbols;
ljnq_upd((i,vc,f,t ,qs) ,vbols)(lu) end,

mk..De1ivery((rc,f,t ,qs) ,vbol) •
let cbol = LdlvLcbol((rc,f,t ,qs) ,vbol)(lu) in
kl[i ,l] !cbol;
LdlvLupd((rc,f,t ,qs) ,(cbol ,vbol))(lu) end,
mk.1nq_Trace(cbol) •
let trace =ιtrace(cbol) (lσ) in kl[i,l]!trace;
ιtrace_叩d(cbol ， trace)(lσ) end,

mk-Fetch(cbol) •
let cargo = Lfetch(cbol)(lσ) in kl[i,l]!cargo;
lJetch_upd(cbol,cargo) (lσ) end

end end I i:KIdx } in
log(l)(lu') end

Logistics Fﾎrm Initiated → Client 宜、ransactions:

value

log_cli: l :LIdx • LE • out { clk[l ,i] I i:KIdx } Unit
log_cli (l)(l，σ) 三

if Lrcvd_pred(lσ)
then

let (i,cbol) = Lrcvd(lσ) in
clk[l ,i] ! mk ...Received(l,cbol) ;
log(l) (Lrcvd_upd(i ，cbol)(lσ)) end
else log(l)(l，σ)

end

Etcetera. We leave it 一泊 an exerise - to the reader to decipher the formulas.

33

1“ h of 為置&， 2002 , 12:16 @ Dinc. Bj.rner , Pl-ed....ej 11 , DK-2.'O Holte , Denm.ark, 2001 2002

-r:133

T':134

r:13

7":138

34 SEA Seminar, Tokyo: - Informatics of Infrastructures

3.4.5 Discussion

The two previous examples: electronic-business, and freight transport logistics , share many
properties. Besides similar forms of transactions , apparent need for modalities and speech
act concepts, distribution and concurrency, f3c. , they both model the transaction-oriented
flow of material , information , and control. The next example emphasises the additional flow
of people.

3.5 Health-care

The health-care sector “features" many stake-holders:

白 "胃

D: 伽ug store, pharmacy
1: Insll'ance (hea抽)
C: Citizen
M: Medical doctor
G: Government
ii1d. R'噂畑町 authority
N: Nurse (community)
H: Hospital
K: Clinic or clinical test laboratory

OMmp『E
instantiations

骨一一 Communication

A healthcare process graph

Figure 13: Stake-holders of the Healthcare Sector

Figure 13 designates drug stores health insurance - citizens medical doctors - national

board of health ministry of health - community nurses pharmaceutical industry hospitalsｭ

clinics and their pairwise interactions.

Without much further ado, we embark on a formalisation.

3ふ1 The System States and Process

type

KE , ME , PE, HE , .
Kldx, Mldx, Pldx, Hldx, .
。= (Kldx 討 KE) x (Mldx 討 ME)

x (Pldx 討 PE) x (HIdx 討 HE)

@D回目 Bj酎ner. Pred・.ej 11. DX-2S40 Holte, Denmark , 2001-2002 1・‘h of May 2002 , 12:16

7":135

A Future for Computing Science - Monday June 17th, 2002 35

ﾗ

value

(ikO' ,imO' ，ipO' ，出σ， ...):6

sys: 6 • Unit
sys(ikO' ,imO' ，ipσ ，ihσ ，…)三

11 { client(i)(ikσ(i)) I i:阻む} 11
11 { doctor(i)(imσ(i)) I i:Mldx } 11
11 { pharmacy(i)(ipσ(i)) I i:Pldx } 11
11 { hospital(i)(ihσ(i)) I i:Hldx } 11 …

3.5.2 The Channels

type

CKM, CKP, CKH , CMP, CMH , …
channel

{ ckm[k,m] I k:Kldx,m:Mldx } CKM
{ ckp[k,p] I k:Kldx,p:Pldx } CKP
{ ckh[k,h] I k:Kldx,h:Hldx } CKH
{ cmp[m,p] I m:Mldx,p:Pldx } CMP
{ cmh[m ,h] I m:Mldx,h:Hldx } CMH

3.5.3 Client 件 Medical Doctor

value

client: k:Kldx • KE •
in,out { ckm[k,m] I m:Mldx }
in,out { ckp[k,p] I p:Pldx }
in,out { ckh[k,h] I h:Hldx } Unit
clien t (k)(kσ) 三

type

KChoice == meddoc I pharma I …
value

client(c)(kσ) 三

[1] let choice = meddoc n pharma n… in
[2] let kσ
[3] cases choice of

[4] meddoc •
[5] let d = select ..meddoc(kσ) in
[6] ckm[c ，d]!kσ;
[7] ckm[c,d]? end,
[8] pharma •
[9] let p = selecLpharma(kσ) in

1 ・‘h of M&y 2002. 12:16 @ Dinea Bj.rner , Pr-cdn'cj 11. DK-la..o Holte. Dcnmar. , 200ト2002

T:139

T: l・0

T:l

T:l1

r. l・ 1

36 SEA Seminar, Tokyo:・ -Informatics of In企astructures

[10] ckm[c,p]!kσ;
[11] ckp[c,p]? end,

end in

[12] client(c)(kσう end end

(1) A client chooses either to go to the doctor, or to the pharmacy, or ... (4) If the client
decides to go to the doctor, (5) a selection of which doctor h槌 to be made, (6) and the client
goes to that doctor, (7) and returns from that doctor (2) in a new state. (8) If the client
decides to go to the pharmacy, (9) a selection of which pharmacy h槌 to be made, (10) and
the client goes to that pharmacy, (11) and returns from that pharmacy, (2) in a new state.

T 川 Etcetera. (12) The client continues in that new state.

T: l‘3

type

MChoice == citizn 1 pharma 1 …
value

doctor(d)(dσ) 三

[l]let choice = citizn 1 pharma 1 … in
[2]let dσ

[3] cases choice of

[4] citizn •
[5] 11 { let kσ= ckm[c,d]? in
[6] let (kσ' ，du') =handle_c(kσ ，dσ) in

[7] ckm [c刈!ku' ;
[8] dσ， end end 1 c:Cldx }

[9] n dσ，
[10] pharma •
[11] 11 { let pσ= ckm[d ,p]? in
[12] let (pu' ,du')=handle_p(pu ，dσ) in
-[13] ckm[d,p]!pu' ;
[14] dσ， end end 1 p:Pldx }

[15] n dσ，

end in

[16] doctor(d)(du') end end

(1) The medical doctor choose whether to respond to a visit from a client, or a call from
the pharmacy, or ... (3,4) In c描e of declaring willingness to receive a client, (5-8) some client
is handled , (9) or no client is handled - say for the c酪e of no clients in the waiting room !

(5) A client is received, (6) treated, (7) sent away, (8) and the medical doctor prepar田 for
吋.. next action (2) in a new state. (3,10) In c酪e of declaring willingness to receivecall from a

pharmacy, (11-14) some pharmacy call is handled, (15) or no pharmacy call is handled - s可

for the c描eof no such calls! (11) A pharmacy call is accepted, (12) handled, (13) terminated,
(14) and the medical doctor prepares for next action (2) in a new state. (16) The medical

doctor continues in that new state.

@ DinCl Bj・rner ， Pred..ej 11 , DK-2・.0 Bolte , Denmarlc, 200ト2002 1 ・色h of May 2002 , 12:16

T:14S

A Future for Computing Science - Monday June 17th, 2002 37

3.5.4 ReInaining Interactions

Similar analysis and description must be carried out for the full spectrum of the health-care

sector stake-holder intra-and inter-actions:

• Client 付 Pharmacy

• Client 仲 Hospital

• Medical Doctor t-+ Pharmacy

• Medical Doctor t-+ Hospital

• &c.

We have just intimated what is to be done !

3.5.5 Discussion

The model is cursory. It does, however, model indeterminicay: Impatient clients returning
from a medical doctor's waiting room withiut being treated. Irrational medical doctors never

choosing to listen to pharmacy calls. Etcetera.

3.6 Transaction Scripts

3.6.1 The ProbleIn

We have seen in the three previous examples how tasks were carried out by a distributed

set of operations either on freight (描 for the logistics example) , or on potential or real
merchandise (描 forthe electronic business example) , or on people ー in the form of patients.

The distributed set of operations were somehow e宜ected by there being an actual or a virtual

.,.:14‘

T":1‘7
，;曲。./wfl町制

(a tacitly understood) protocol. We wi1l now examine this notion of “protocol" further. ..:14・

There are two issues at stake: To find a common abstraction, a general concept , by means
of which we can (perhaps better) understand an essente of what goes on in each of the

previously illustrated examples; and thus to provide a “common denominator" for a concept
of work ゚ ow systems, a concept claimed to be a necessary (but not su伍cient) component

of “being an infrastructure" .15 We could now proceed to a slightly extended discussion & 吋柑
analysis of various issues that are exemplified by the previous three examples; but we omit

such a discussion & analysis here - leaving it to a more vivid “class-room" interaction to
do so. Instead we delve right into one outcome of, ie. one solution, this discussion & analysis,
respectively search for a common abstraction, a general concept.

3.6.2 Clients, Work Stations, Scripts and Directives
There are clients and there are work stations. Clients initialise apd interpret scripts. A script

is a set of timeーinterval stamped collection‘ of directives. Interpretation of a script may lead
a client to visit (ie. to go to) a work station. A client can at most visit one work station at a

15Railway systems, as are indeed all forms of 仕組sportation systems, are thought of 回 being in企白色ructure
components, yet , in our p回tmodels of railway s�stems the work flow nature w出 somewhat hidden, somewhat
less.obvious.

1 ‘色h of M.J' 20021 12:16 @D皿e. Bj.rner. Prednej 11 , DK-2140 Holte, Den:r

T:lSO

'T:l

38 SEA Seminar, Tokyo: - Informatics of Infrastructures

time. Thus clients are either idle, or on their way to or from a work station: Between being
idle or visiting a previous work station. At a work station a client is being handled by the

work station. Thus work stations handle clients, one at a time. That is, a client and a work
station enter into a “rendez vousぺ ie. some form of co-operation. Client/work station cか

-operation exhibits the following possible behaviours: A directive is fetched (thus removed)

from the script. It is then being interpreted by the client and work station in unison. A

directive may either be one which prescribes one, or another, of a small set of operations to
take place - with the possible effect that , at operation completion, one or more directives

T:l日 have been added to the client script; or a directive prescribes that the client goes on to visit

T:15l

T:lS4

another work station; or a directive prescribes that the client be released. Release of a client

sets the client free to leave the work station. Having left a work station as the result of a

release directive “puts" the client in the idle state. In the idle state a client is free either
to fetch only go to work station directives, or to add a go to work station w directive to its
script , or to remain idle.

3.6.3 A Simple Model of Scripts

Formalisation of Syntax:

type

T, ß
aXlom

V t ， t':T ，ヨ Ó:ß ・ t'三 t =争 Ó = t'-t
type

C , Cn, W , Wn
S' = (T x T) 対 D-set
S = {.I s : S' ・ wLS(s) 1}
D ==. g(w;:Wn) I p(w:W,f:F) I release
F' = (C x W) • (W x c)
F = {I f:F ・ wLF(f) I}
value

obs_Cn: C • Cn
obs...5: C • S
obs_Wn: W • Wn
wf...5: S • Bool
wf...5 (s) 三 V (t ， tう : (TxT) ・ (t ， tうεdom S. t三 t'
wf...F: F • Bool
wf...F(c,w) as (c',w')
post obs_Cn(c)=obs_Cn(c') 八 obs_Wn(w)=obs_Wn(w')

Annotations 1: There are notions of (absolute) time (T) and time intervals (゚). And there
are notions of named (Cn , Wn) clients (C) and work stations (W). Clients possess scripts,
one each. A script 描sociates to (positively directed) intervals over (absolute) times zero, one
or more directives. A directive is either a go to, or a perform, or a release directive. Perform
directives specify a function to be performed on a pair of clients and work stations, leaving
these in a new state, however constrained by not changing their names.

@ Dinca Bj・rner . Predn'cj 11, DK-2140 Ho1te, DenDlark, 2001-2002 1机h of May 2002 , 12:16

A Future for Computing Science - Monday June 17th, 2002

3.6.4 A Simple Model of Work Flow

Formalisation of Semantics - The Work Flow System:

type

Cn, Wn
CE , WE
CO = Cn 討 CE

WO=Wn 対 WE

value

obs.B: CE • S
remove: (TxT) x D • S • s
add: (TxT) x D • S • S
merge: S x CE • CE
obs_CE: C • CE
obs_WE: W • WE

ω:CO， wω:WO ， to :T , 15 :ふ

sys: Unit • Unit
sysO 三

11 { client(cn)(to)(ω(cn)) I cn:Cn } 11
11 { work....station(wn)(to)(wω(wn)) I wn:Wn }

39

Annotations 11: Clients and work stations have (ie. possess) stat回. From a client state one
can observe its script. From a script one can remove or add a time interval stamped directive.

From the previous notions of clients and work stations one can observe their states.16 cω ， Wω
to , and 15 represent initial values of respective typ田- needed when intialising the system
of behaviours. A work ゚ ow system is now the parallel combination of a number (# Cn) of
clients and a number (# Wn) of work stations, the latter all occurring concurrently.

Formalisation of Semantics - Clients:

channel

{cw[cn,wn] 1 cn:Cn, wn:Wn} M

value

client: cn:Cn • T • CE •
in,out { cw[cn,wn] 1 wn:Wn } Unit

client(cn)(t)(cσ) 三

cidle(cn)(t)(cσ) n c...step(cn)(t)(cσ)

cJdle: Cn • T • CE • Unit
c-.idle(cn)(t)(cσ) 三

16The two notions may eventually, in requirements be the same. In the domain it may be useful to make a
distinction.

14th of May 2002, 12:16 @Din四 Bj.rner ， Pred..ej 11 , DK-2“ o Holie , Den皿ark ，2001-2002

-r:155

'T : 15・

-r:157

'7":158

T:159

-r:160

'1":161

40 SEA Seminar, Tokyo: -Informatics of Infr踊tructures

let t':T・t'>t in client(cn)(tう (cσ) end

cstep: cn:Cn → T → C~ →

in,out {cw[cn,wn] I wn:Wn} Unit

Annotations 111: Any client can, in principle, visit any work station. Channels model
t凶 abi1ity. A client is either idle or potentially visiting a work station (making one or more

transaction steps). The client makes the (ie. a non-deterministic internal) choice, whether idle
or potential action steps. To “perform" an idle “action" is to non-deterministically advance
the clock.

Formalisation of Semantics 一一 Clients Continued:

cstep(cn)(t)(cσ) 三

let s = obs-S (cσ) in

if ヨ (t' ，t"):(TxT) ，g(wn):D ・(t'，t")εdoms 八
t'三t壬t"^ g(wn)εs(tγ')
then

let (t'，t"):(TxT) ，g(wn):D ・ (tγ)εdoms 八
t'三t三t" 八 g(w)εs(tγ') in
let cu' = remove((t'，t") ，g(wn))(cσ) in
let (tぺcσ") = c2ws_visit(t',t")(cn,wn)(t)(cu1 in
client(cn)(t勺 (cσ勺 end end end
else

let tlll:T ・ tlll = t + 8 in
client(cn) (tlll) (cσ) end

end end

c2ws_visit: (TxTxcn:Cnxwn:Wn) → T → C~ →

h叩ut { cw[cn,wn'] I wn':Wn} (T x C~)
c2ws_ visi t (tγ)(cn,wn)(t)(cσ) 三

cw[cn,wn] ! ((tγ') ，cnムcσ) ;
日{ cw[cn,wn'] ? I wn':Wn }

Annotations IV: From a client state we observe the script. If there is a time interval
recorded in the script for which there is a goto directive then such a time interval and goto

directive is chosen: removed from the script, and then a visit is made , by the client to the
designated work station, with this visit resulting in a new client state - at some “later" time.
Otherwise no such visit can be made, but the clock is advanced. A work station visit starts
with a rendez-vous initiated by the client, and ends with a rendez-vous initiated by the work
stat�n.

Formalisation of Semantics - Work Stations:

work...station: wn:Wn → W~ →

@ Dine. Bj・rner ， Predu'ej 11 , DK-2840 Holte , Den皿ark ， 2001-2002 1 ・‘h of M&7 2002, 12:16

A Future for Computing Science - Monday June 17th, 2002

in,out { cw[cn ,wn]1 cn:Cn } Unit
work ...station(wn)(wσ) 三

let ((t' ， t") ，cn ， tぺcσ) 二 日 {cw [cn ，wn J? l cn :Cn} in
let (tピ仰ぺ"附"ぺ勺'， (いsσ，ヘ，wσ〆')) = w...step((れtγ1C吋H川ぺ" (恥cσ ， wσ)日) in
cw[cn民，wn叫] !刊(tピ仰，，，川"乍，

work...station叫(wn吋)(wσcr'う) end end

w...step: (T x T) • wn:Wn • (CE x WE) •
in,out { cw[cn,wn]1 cn:Cn } Unit

w...step((tγ') ，(cn ,wn) , t lll
,(cσ ，wσ)) 三

let s = obs-S (cσ) in

if s={} then (tぺ (cσ ，wσ))
else assert: (tγ)εdoms
let d:D ・ sεs(tγ')in
cases d of

p(wn ,f) •
let (φt"ぺ(令sσ ,i, w σcr'ワ)) = act(σf，t""ぺ勺，(いsσ ，ヘ，wσゲ，す)) in
let sσ"=r目emove吋((れtピ〈，:γ，
w...step((れtγ)，(ベ(恥cn ，wn)仏)，λ，t"附仰，ぺ，仁，(いsσ Hぺ，wσ〆')) end end
release •
let scr' = remove((t'，t") ，p(wn ，f))(sσ) in
(tぺ(cσ' ，wσ)) end,

一→ (tぺ (ccr ，wσ))
end end end end

41

Annotations V: Each work station is willing to engage in c• operation with any client.
Once such a client has been identi貧ed (cn , cσ) ， a work station step can be made. If the
client script is empty no step action can be performed. A work station step action is either

a function performing action, or a release action. Both lead to the removal of the causing
directive. Script go to directives are ignored (by work station steps). They can be dispensed

by client steps. Function performing actions may lead to further work station steps.

3.6.5 Discussion

We have sketched a semi-abstract notion of transaction fiow. A syntactic notion of directives

and scripts have been defined. And the behavioural semantics of scripts as interpreted by

clients and work stations. We emph槌ize that the model given so far is one of the domain.

This is refiected in the many non-deterministic choices expressed in the model, and hence
in the seemingly “erratic'\unsystematic and not necessarily “exhaustive" behaviours made

T":162

T' :1‘3

possible by the model. We shall comment on a nu,mber of these. See the client behaviour: .,. 刷
Whether or not a client is step is possible , the client may choose to remain idle. See the client
idle behaviour: The client may choose to remain idle for any time interval, that is “across"
time points at which the script may contain directives “timed" for action. Now we turn to
the client step behaviour. The purpose of the client step behaviour is to lead up to a client d ‘s

to (2) work station visit: Several 'goto work station' directives may be prescribed to occur

sometime during a time interval “surrounding" the “current" time t of the client: t'壬t壬t".

1・‘h of ~置&J 2002. 12:16 @ Dmu Bj町ner ， Predn'ej 11. DK-2&40 Bolte, Denmark , 2001-2002

T :l“

42 SEA Seminar, Tokyo: - Informatics of Infrastructures

Which one is chosen is not specified. In fact , one could argue that we are over-specifying the
domain. A c1ient may choose to go to a work station ahead oftime: t <t'~t" . or late: t'三 t"<t.
We leave such a domain “relaxation" as an exercises to the reader. If there are no selectable
'goto work station' directive, time (t) is stepped up by a fixed amount, but , again , one could
choose any positive increment , but that would make no diπerence 出 it would just “reduce"
(correspond) to the c1ient idle behaviour. The c1ient to (2) work station visit (c2ws_visit)
behaviour models the interface between clients and work stations 笛 seen from the client side.
That “same" interface as seen from the side oﾍ work stations is modelled by the two formula
lines surrounding the formula line in which the 'work station step' behaviour is invocated. We

now turn to work station step behaviour. This is the behaviour “where things get done !".
T:167 The behaviours described above effected the flow. Now we describe the work. And the work

is done by performing functions. Here it should be recalled that when a c1ient interacts with

a work station both their states are “present" . This is amply illustrated in the work station
step behaviour. The functions to be performed apply to both c1ient and work station states,
and may affect both.

If the script is empty nothing more can be done - so we are finished. If the script is not
empty then we can 笛sert that the work station step time interval argument is one for which

刊同 an entry can be, and is , selected from the script 一一 non-deterministically. That entry can

(thus) be either of several: It can be a perform directive aimed at the present work station -
in which c槌e the designated function is acted upon, the directive is removed from the script ,
and another step is encouraged. It can be a release directive - in which c描e the c1ient is
released, becoming an unengaged c1ient again after the release directive has been removed. Or
it c組 be any other directive (other perform directives , aimed at other work stations, or go to
directives) - in which c酪e the c1ient is likewise “releasedヘ but the directive is not removed.

刊帥 Observe the looseness of description. Besides including all the possibly desirable behaviours,
the full model above also allows for such behaviours as could be described 回 being sloppy,
delinquent, or even outright criminal. This concludes our sketch model of transaction scripts
and their intended work flow.

T:170

Ii.bo・1M・d・・

'1":171

3.7 Dﾎscussﾎon - So Far !

Interpretation as Health-care Systern: The Transaction Script Work Flow example

can be interpreted , amongst many alternatives，話 an abstract health~are system. Clients

町e potential patients. Scripts are their plans for visits to family physician, pharmacy, clinical
test laboratory and hospital. And these latter are seen as work stations. Of course the work

stations themselves have scripts. Etcetera !

General Cornrnents: The electronic business requirements，笛 illustratedby Figure 7, can
be handled by agent clients and appropriate directives: The buyer initialises the agent to

'go to retailer' and simple ‘retail order' directives. The latter is either fulfilled by the retailer
(hence the agent is released and returns to buyer with goods) , or replaced by 'go to wholesale
seller ',‘wholesale order' and ‘go to retailer' directives, with the 'wholesale order directive'
either being fulfilled by the wholesale seller (hence rele踊es the agent to return to retailer) ,
or, etcetera !
Similar scripts can be associated with logistics ‘bill-{)f-ladings', etc.
In connection with appropriate simple speech act primitives the script and transaction

notion can be made rather sophisticated !

@ Dine. Bj・I'Der . Predlycj 11. DK-28‘o Holtc. Denmark. 2001-2002 1創h ofM町 2002 ， 12:16

A Future [or Computing Science - Monday June 17th, 2002 43

4 TypejValue “Systems"

4.1 Intuition

To motivate our treatment of types and values we first exemplify documents of infrastructure

components. Then we look at some generic issues of such documents.

4.1.1 The ProbleIn

Infrastructure component systems have certain characteristic features. One of them is the

kind of information and/or documents that “自avour" the component. Below we hint at some

examples.

4.1.2 Patient Medical Records

A patient medical record is a typical (a core) document ofhealth-care systems. The base part

of a patient medical record contains administrative information. Descriptive parts contains

doctor's notes (annamnese, measurements , diagnostics, etc.). Goal" parts set out plans for
treatment.

type

Base, Pn, Desc, Goal
PMR = Base x (Pn x Prob)

Prob = Desc x Goal x SubP x OldP

SubP = Pn 討 Prob

OldP = Prob

As treatment goes on original problem may change: It may be replaced by an altogether new
formulation. Or it may be decomposed into separately treatable sub--problems. Or both.

Patient medical records need be studied using computing science principles and techniques.

4.1.3 Bill-oιLading

Bills-of-lading seem the core document of Iogistics.

A bill-of-ladi時 consistsof administrative information, base information (weight, physical
measures, value , etc.) , a hub of orig思l叫I
departure and arrival times and c∞onveyor index.

type

BoL = Admin x B出exHIdxx(T x CIdxx T x HIdx) *

4.1.4 Product Catalogue

Product price or service fee catalogues seem the core documents of electronic business.

To product (or service category) names correspond administrative information, a price/fee
table, and delivery conditions (including times). A price/fee table may designate quantity
rebates.

14th of 勘lay 2002 , 12 ・ 16 @ Dinel Bj町nu ， Predn'ej 11. DK-2&40 Holte , Den.mar lr., 200ト2002

T:l72

Ii曲。ajinfointr

'T:173

T":174

T:17S

-r:176

T:l77

T:178

l i・b ・ a/infod。臼

T:179

'T:180

44 SEA Semínar, Tokyo: - Informat兤s of Infrastructures

type

CTLG = Pn 討 Admin x (Q 討Itm_price)x Del

4.1.5 Discussion

We have - ever so briefly - hinted at some infrastructure component document types. We

next look at two facets of such documents: Their being originals and copies, etc. And their
being displayed , in the domain or by computer.

4.2 Documents: Originals, Copies, Editions and Physics
Another set of facets of document creation and flow handling are those of copies versus

originals, copies of copies, a veritable hierarchy of documents, and their versions.

4.2.1 Originals, Masters and Copies
N arrative: Let there be a notion of an original (document). And let there be a notion of

copying a document , from a master, whether original or already a copy. Let there be the
notions of global time and locations. Originals are created from information at a time and at

a location. Copies are made from (master) documents at a time and at a location

Formalisation:

type

1, T , L
D' == 0 I C
o == mkOrig(r:T ,l :L,i:l)
C == mkCopy(r:T ,l:L ,d:D)
D = {I d :D' ・ wfD (d) I}
value

wfD: D' • Bool
ばD(d) 三

cases d of

mkCopy(dう→ r(d) > r(d') ，一→ true end

Comments: The above model represents, perhaps more a requirements model than a dcト
main model. This is 50 since the model describes the property that from any document one

can uniquely observe whether it is an original or a copy, and, if a copy, one can observe the
time and place of the copying and the document from which it w踊 copied is “kept intact"
Nothing is lost.

o
c

l

•• ∞
d
D

B

け
×

→
川
L

T

T

X

ﾗ

1

e

T

抗
駅
d
a

e

-
-
e

げT
n

h
>

口
氏

m

m

邸

@ Dinc. Bj.rncr , Prcdn'町 11 ， DK-2・40 Holtc , Dcnmark , 2001-2002 14th 01 M.,. 200 2 , 12 ・ 16

A Future for Computing Science - Monday June 17th, 2002

V t ,t':T •
t>t' 八，，-， (t=t'vt'> t)
t'>t 八，，-， (t=t'Vt> t')
t=t' ̂ ,,-,(t> t'vt'>t)

45

AxiolllS: In general we can express the following properties that are not directly modelled,
but can be described through axioms: No two documents can be made: Created or copied ,
at the same time and (co吋unction) location. If two documents are copied from the same (ie.

third) document then they are copied at either different locations at the same time, or at the
same location at different times, or at different locations and different times.

axlOlll

V d ，d' :D ・
d =j; d' =今
"-'(T(d) =T(d') 八 l(d)=l(d'))
^ ((T(d)=T(d') 八 l(d)=j;l(d'))
v (T(d) =j;T(dう八 l(d)=l(d'))
v (T(d) =j;T(d') 八 l(d) =j;l(d')))

4.2.2 Editions

Documents, once created or once copied , can be subject to editing. What may appear to
be physically one document may be subject to series of repeated edits and/or the basis for

repeated copying.

type

ﾟ=OICIE
C' == mkCopY(T:T ,l:L,8:ß)
C = {I c:C' • wf゚(c) I}
E' == mkEdit(i:I戸T ，l:L ，8 : ß)

E = {I e:E • wf゚(e) I}
value

wf゚: (C'IE') • Bool
wf゚ (mkCopy(t ，-，8)) 三 t>T(8)

wfß(mkEdit(iム-，8)) 三 t>T(8)

edit: 1 x T x L x ß • E
edit(i ， t ， I ， 8) 三 mkEdit(i ，t ， I ， 8) pre t>T(8)

The story on copying etcetera should now be modified.

4.2.3 The Physics of Doculllents

N arrative: No two documents c組 occupythe same physical, including electronic, ie. spatial
location. This goes for originals, copies and editions. The spatiallocation of a document may
change, dynamically. To locate a document is to observe that it is indeed in some spatial
location. We could decide to make the spatial location a property of the observer, the one

1 ・亀h of May 2002, 12:16 @Dine:.Bj・rnu ， Predu'cj 11 , DK-2"O Holh:, Denm町lr:， 200ト2002

'T:181

T:182

T: l・3

T :18‘

T:18S

T:186

46 SEA Seminar, Tokyo: -Informatics of Infrastructures

who明nds" ， who locates a document , and not of that document. Or we could decide, viceｭ
-versa, that with every document there is an inert dynamic property, namely its spatial
location. If we choose the latter we become involved in the following modelling:

Formalisation of Document Locatability:

type

DOC , L
value

obs~: DOC • L
obsJ): DOC • D
copy: T x DOC • DOC
nexLto: L x L • Bool
aXlom

V t:T,doc:DOC •
let doc' = copy(t ,doc) in
l(obsJ)(doc')) = obs~(doc') 八
nextよo(obs~(doc) ，obs_L(doc')) end

The axiom expresses that at the time a document is copied the copy location (l(obs_D(doc')))

is that of the new document location (obs_L(doc')) , and the location of the m面ter and its
copy are located nexLto one another. The mereology of ‘nexLto' is an interesting one to
study !

Monotonicity: Time progresses, it is assumed “smoothly" , hence observable document
locations, if they change, change accordingly. Thus a monotonicity a泊om is required. Let
us 槌sume that from a document we can also observe the global time , and project it, at any
time, onto its base document (one that is “stripped" of global time and spatiallocation):

value

obs_T: DOC • T
projJ): DOC • T • D
axlom

V doc:DOC , t ， t' :T ・
let (d,d') = (proj J)(doc)(t) ，projJ) (doc)(内)
in version(d ，dう end

4.2.4 Discussion

The models above, of temporal properties of documents, is problematic - and should probｭ
ably be tackled rather more profoundly. Probably we ought instead introduce a notion of

tim• varying function over documents:

type

Doc , T
DOCS = T • Doc

@ Dine. Bj・rner ， P'r"ed・ ...ej 11 , DK-4:・40 Holte , Oenmarlr:, 200ト2002 1 ・.h ofM・J' 2002 , 12:16

A Future for Computing Science - Monday June 17th, 2002 47

value

obs_L: Doc • L

etcetera.

In general we need , however, resort to more seriously worked out ontologies of time and
mereologies of parts and wholes. But this takes us too far in this paper.

4.3 GUIs: Graphic User Interfaces and Databases
'1':187

We have seen them: Nicely formatted GUIs: Graphic User Interface (computer screen) "win- 抽o./infocui

dows" , with “clickable" icons, scro11寸own curtains, sub-windows, and tables with rows and
columns and all of these being either “on" or “off" (ie. “clicked" or “not clicked") , with
explanatory texts, and with possibly associated values that the user c組旬11 in". We now

present a formal model of a “rich" class of GUIs.

4.3.1 GUIs: Graphic User Interfaces

The GUI Display: A11 icons , curtains, sub-windows and tables have names:

type

G UI = Txt x Icns x Crts x Wins x Tbls
Icns = In 討Icon

Crts ニ Cn 討 Curt

Wins = Wn 討 Wind

Tbls = Tn 討 Tabl

Icon = OnOff x Txt x VAL

Curt = OnOff x Txt x Disp事

Wind = OnOff x Txt x GUI

Tabl = OnOff x Txt x REL

Disp == mkI(i:lcon) I mkC(c:Curt)
I mkW(w:Wind) I mkT(t:Tabl)

REL = TPL-set

TPL = An 討 VAL

OnOff == off I on

Curtain entry “values" may be GUI windows themselves.

GUI Types & Values: For end-users to design own GUIs tools are provided, tools which
imply a GUI type concept:

type

GTyp = IcnTyps x CrtTyps x WinTyps x TblTyps
IcnTyps = In 討IcnTyp

CrtTyps = Cn 討 CrtTyp

WinTyps = Wn 対 WinTyp

TblTyps = Tn 討 TblTyp

IcnTyp = Typ

1“ h of 勤by 1002 , 1l:16 @ Dine. Bj,rner . Frcdnej 11 , DK-28tO Holtc , De出nark ， 2001-2002

'1' :1・・

'1':189

T:190

T:191

ず :192

T:193

Ji・b。・/infodi.

48 SEA Seminar, Tokyo:・ -Informatics of In企部tructures

CrtTyp = DTyp・

WinTyp = Gtyp
TblTyp = RelTyp
DTyp == mkITyp(it:IcnTyp)lmkCTyp(刈rtTyp)

I mkWTyp(wt:WinTyp)lmkTTyp(tt:TbITyp)
RelTyp = An 討 Typ

Typ == integer I boolean I text I character
VAL = Int I Bool I Text I Char

GUI type concept implementation amounts to a GUI window , usual1y with border icons, etc .,
for “clicking, dragging & dropping" designed window entities.

4.3.2 Data Bases

Window (icon, table) values usually re゚ect values of fields and rows of relational datab蹴
types:

type

ReIDB = (Rn 討 RTyp) x (Rn 討 RELN)
RelTyp = An 討 ETyp

RELN = RTpl-set
RelTpl = An 討 EVAL

ETyp == integer I boolean I text I character
EVAL = Int I Boo11 Text I Char

The GUI window icon and table values displayed are obtained by attribute (An) reference

to unique key value (KeyTpl) designated tuples of named 凶tions (Rn) of an underlying
relational database.

type

TblTyp = Rn
Typ == integer I boolean I text I character I mkR(r:Ref)
Ref = Rn x KeyTpl x An
KeyTpl = RelTpl

4.3.3 Discussion

Notice a “homomorphism" between GUIs (ie. “values") and types. Appropriate (primitive)
operations can now be de貧ned for effecting value re゚ections: Screen display vs. database

contents, for updating the database “through" screen updates, &c.
We leave the explication here.

4.4 Discussion

We have lifted a veil over some non-standard ways of looking at types and values, and we
have sketched a general GUI vs. database mechanism.

In our forthcoming text book ([3]) we bring the above type/value design ideas together
with the work ゚ ow system design concept shown earlier.

@ Dines Bj軒目r. Pr~d..~j 11 , DK-2S40 Holt~ ， Denlllark , 2001-2002 1 ・‘h of May 2002 , 12:16

A Future for Computing Science - Monday June 17th, 2002 49

5 Conclusion

5.1 Summary and Discussion

We have tried to conjure an image of a notion of infrastructure components. We have brought

forward both a question and a number of fragments of concurrency and typejvalue models of

such infrastructure components. And we have tried encircle the problem: Namely trying to

answer the question "What is an in企部tructure ア， by sketching claimed engineering disciplines

of software development: Denotational, concurrency, typejvalue, logic , agents and la時uag←

7":194

l i・ boafconc

based knowledge engineerings. ...:195

The typejvalue GUI example also reflected a denotational engineering facet: A (GUI)

type denoting a possibly infinite collection of values (ie. GUI windows).

Our attempt at “decomposing" development of software into “featuring" denotational,
concurrency, typejvalue, knowledge and other engineering considerations is, somehow , orｭ
thogonal (read: Complementary to) to Michael Jackso山 work on Problem Frames [10).

An Apology: It is lamentable that my examples did not illustrate uses of other than RSL

[5). It ought also have contained examples of uses of one or another Duration Calculus

[11 , 12, 13, 14, 15, 16, 17). 1 apologise.

5.2 “What is an Infrastrudure ?"

An infrastructure is a collection of infrastructure components. There is synchronisation 組d

communication between and within the components. We have shown only the latter.

An infrastructure component is a language: The professional, specialised jargon language
spoken by professionals and users ofthe infrastructure component. We have focused on several

such languages: The language of “the market" , whether ordinary or electronic; the language
of logistics, whether ordinary or electronic; the language of transaction scripts and directives,

7":19‘

whether ordinary or electronic; f3c. ・ 197

We have modelled verbs of these languages in terms of behaviours over states and events.

So infr出tructure components are seen 出“computing systems" although they are not necesｭ

sarily computable !

5.2.1 A Possible Impact of Computing Science upon In仕astructures

If, what we are saying above, has any relevance, then it is perhaps this: That in future
business process re-engineering (BPR) of infrastructure components the BPR engineer m可

be well served in being fluent in - and in using - the kind of informatics and computing

. science concepts exemplified by this paper.

It is all a matter of language !

6 Bibliographical N otes

A book has just been published: Specif�ation Studies in RAISE. It is edited by Chris George,
Tomasz Janowski, Richard Moore, and Dan Van Hung. It is published, early 2002 , in the
Springer-Verlag UK FACT series. It contains so many relevant papers and references that

the below should su値目.

u色h ofM・y 2002, 12:16 @ .DinuBj町山， PTedlycj 11 , DK-2840 Holtc , De lUll&rk , 2001-2002

7":198

50 SEA Seminar, Tokyo: - Informatics of Infrastructures

References

[1] Dines Bjørner “陥at is a Method '1" - A Essay of Some Aspects of Domain Engiｭ

neering, chapter 9, pages 177-205. IFIP WG2.3. Springer, New York, N.Y., USA, 2002
Programming Methodology: Recent Work by Members of IFIP Working Group 2.3. Eds.:

Annabelle Mclver and Carroll Morgan.

[2] Dines Bj�ner. Domain Engineering, Elements of a Software Engineering Methodology 一
Towards Principles, Techniques and Tools - A Study in Methodology. Research report ,
Dept. of Computer Science & Technology, Technical University of Denmark, Bldg. 343,
DK-2800 Lyngby, Denmark, 2000. One in a series of summarising research reports
[18, 19].

[3] Dines Bj�ner. Soft仰向 Engineeriη，g: Theo叩 (3Practice. (Publisher is being contacted) ,
2002. These Lecture Notes represent the author's Chef d'(Evre - the summary of more

than 25 years of research, development and teaching.

[4] Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, S�en Prehn，組d

Jan Storbank Pedersen. The RAISE Method. The BCS Practitioner Series. Prenticeｭ

Hall, Hemel Hampstead , England, 1995.

[5] Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert Milne,
Claus Bendix Nielsen, S�en Prehn, and Kim Ritter Wagner. The RAISE Specポca・

tion Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead , England,
1992.

[6] C.A.R. Hoare. Communicating sequential proc回目s. Communications of the A CM,
21(8):666-677, August 1978.

[7] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[8] A.W. Roscoe. Theory and Practice of Concurrency. Prentic• Hall, 1997.

[9] Steve Schneider. Concurrent and Real-time Systems - The CSP Approach. Worldwide

Series in Computer Science. John Wiley & Sons, Ltd ., Ba伍ns Lane, Chichester, West
Sussex P019 1UD, England, January 2000.

[10] Michael A. Jackson. Problem Frames - Analysing and structuri句 so戸仰向 development
problems. ACM Press, Pearson Education. Addison-Wesley, Edinburgh Gate, Harlow
CM20 2JE , England, 2001.

[11] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. lnformation
Processing Letters, 40(5):269-276, 1991.

[12] Liu Zhiming, A.P. Ravn, E.V. Sørensen, and Zhou Chaochen. A probabilistic duration
calculus. In H. Kopetz and Y. Kakuda, editors, Responsive Computer Systems, volume 7
of Dependable Computing and Fault・ Tolerant Systems, pages 30-52. Springer Verlag Wien
New York, 1993.

[13] Zhou Chaochen, A.P. Ravn , and M.R. Hansen. An extended duration calculus for hybrid
systems. In R.L. Grossman , A. Nerode, A.P. Ravn , and H. Rischel, editors , Hybrid

@ Dinu Bj町山富1 Pred....町 11 1 DK-2840 Holte , Denmark , 2001-2002 1 ・色h 01 M&1 2002 , 12:16

A Future for Computing Science - Monday June 17th, 2002 51

Sν'stems， volume 736 of Lecture Notes in Computer Science, pages 36-59. Springer-Verlag,
1993.

[14] Zhou Chaochen. Duration Calculi: An Overview. In Proceedings 0/ Formal Methods in
Programming and Their Applications, D. Bjørner, M Broy, and 1. V. Pottosin (Eds.) ,
pages 256-266. LNCS 735, Springer-Verlag, 1993.

[15] Zhou Chaochen and Li Xiaoshan. A mean value calculus of durations. In A.W. Roscoe,
editor, A Classical Mind: Essays in Honour 0/ C.A.R. Hoare, pages 431-451. Prentice
Hall International, 1994.

[1凶6司] Zh削O

In Formal Techn川lIqt包，es in Real-Time and Fa側包ultι-Tolera官7π叫lt Sy，伊fstems訊， H. Langmack, W.-P.
de Roever, and ょ Vytopil (Eds.) , pag回 86-109. LNCS 863, Springer-Verlag, 1994.

[17η] Zhou
intervals. In F-品t包md吋da仰m附len叩n仰z

LNCS 965 , Springer-Verlag, 1995.

[18] Dines Bj�ner. Requirements Engineering, Elements of a Software Engineering Methodｭ
ology - Towards Principles, Techniques and Tools - A Study in Methodology. Research
report, Dept. of Computer Science & Technology, Technical University ofDenmark, Bldg.
343, DK-2800 Ly時by， Denmark, 2000. Not yet released. Meanwhile refer to [3]. One in
a series of s叫u山叩Iロ即I

[19司] Din肘e白sB町，jø併rne町r. Software Design: Architectures and Program Organisation , Elements of
a Software Engineering Methodology - Towards Principles, Techniques and Tools -
A Study in Methodology. Research report, Dept. of Computer Science & Technology,
Technical University of Denmark, Bldg. 343, DK-2800 Lyngby, Denmark, 2000. Not yet
released. Meanwhile refer to [3]. One in a series of summarisi時 research reports [2 , 18].

7 Figures for Section 3.2

Figure 14 on the next page shows a net , two lines, two stations, and around 64 units: nine
switches, one simple crossover, one switchable crossover, and 11 tracks.

Figure 15 on the following page diagrammatically abstracts instances of the four most basic

forms of units: A linear unit with two connectors, a simple switch unit with three connectors,
a switchable crossover with four connectors, and a simple crossover with four connectors.

Figure 16 on page 53 shows the possible states of two kinds of units: The four possible states

of a linear unit , and the nine possible states of a switch unit. Actual linear or switch units
need not span all these states. ヲ

Figure 17 on page 53 shows the possible directional captures and “freeings" of units during
movements: Situation [0] (0) depicts an initial train position. In situation [1] (1) no captures

nor “freei碍s" have occurred during actual movement. In situation [2] (2) Capture of one unit

has occurred wrt. [1] (1). In situation [3] (3) “freeing" of one unit h酪 occurred wrt. [2] (2).
In situation [4] (4) Both capture of one and “freeing" of one unit has occurred wrt. [3] (3).

1 ・色h of May 2002 , 12:16 @ Dinu Bj.rner, Prcd・'W'cj 11 , DK-2・.0 Holtc , Dcnm町k ， 200ト2002

T:199

52 SEA Seminar, Tokyo: - Informatics of In分astructures

;S副而ー ー ーーー/日直古語-wb品目印ム吋

./. ' " , \'ちく:

(よ ーー主:竺プププーー;三;-1 -U
Pla恒例m Linear Unit

Tr副司k Switch

Crossover

: Station

Legend

Figure 14: A Sample Railnet

一一一一一一一 閣i
. 師側前町

回抱

国nbo

翁町住僧d

Examples of Rail Units
加d 鵬首Conn岡町宮

Figure 15: Four Rail Units

Figure 18 on page 54 shows a simple route from one platform track in one station, to a siding
track in another station. The figure labels all the route units: u1 -u20.

Figure 19 on page 54 shows nine trains at two “neighbouring times": Three have not moved:
tn3 , tn4 , tn10. The others have.

@ Dinc. Bj・m町. Pred..ej 11 , DK-lS40 Holie , D回ma.rk ， 200ト2002 1.“ h of May 2002 , 12:16

53 A Future [or Computing Science - Monday June 17th, 2002

c C'

邸direc幅四祖OyOpen

States of a linear Unit
c C'

O伊n: C' ωc

C C'

句en: C 回 C'

C C'

CI田ed

c__L

States of a Switch Unit

c-/
C'

C 』 バ/
C"

C /
C陥ed C"

C~七/c- / c__ .Mイグ〆

c--/'〆

Figure 16: States of Sample Units

(4)

(3)

(2)

1

1

I

(0)

4・

.圃'-一ー司

一

一
-
: I届 u7 ‘a

{目。

(1)

m
(3)

(4)

‘a

Figure 17: Possible τ'rain Movements

@ Dine. Bj・rner ， Pred....ej 11 , DK-l..O Holte, Denmark , 2001-2002

岨:凶 :

1・色h of MaJ' 200 2 , 12:16

54 SEA Seminar, Tokyo: - Informatics of Infrastructures

u8

叫

u7

u3 uZ ul

凶oT- - -- Rout帥omu11ou20
ull

ulZ ‘ u13 u14

U20

Figure 18: Route of a Rail Net

旬t・

Figure 19: Trainτ同伍C

@ Dinu Bj・rner ， Pred....cj 11 , DK-2&40 Holtc , Denmark , 2001-2002 1“ h ofM・7 2002 , 12:16

SEA 特別 Forum (June, 2(02)

IT インフラストラクチャの構築における情報工学の役割

コンビュータサイエンスの未来

参加者募集

ひさしぶりに東京で開催される SEA の年次総会に先だ、って 表記の特別 Forum(会員限定)を開催します.

講師は，デンマーク工科大学教授のDines Bjomer 先生です. Bjomer 先生は，数年前まで国連大学ソフトウェア研究

所(マカオ)の初代所長として在任され. ISFST その他の国際会議について，われわれ SEA の活動にいろいろご協力
いただきました.

今回の Forumでは，未来の国家システムを支える IT イ ン フラストラクチャの分析や構築にさいして，コンピュー
タサイエンスやソフトウェア工学がどのような役割を果たすべきか また そのことがこれらの分野における研究や
教育あるいは実践のあり方にとってどのようなインパクトを与えるかについてお話しいただきます.

IT インフラストラクチャとは 人びとの日常生活や主要な産業のどジネス活動を支援する社会経済的な諸要素の集
合であり，それには交通システム，金融サーピス産業，病院/福祉システム， E- ビジネス支援環境などが含まれます.
それがどのような重要性を持つかは，さきごろの金融システムのトラブルの例を見るまでもなく，自明の事実です.

そういう意味で，今回の Forumは，われわれソフトウェア技術者にとってきわめて有益なものだと思います.奮っ
てご参加ください。

*材料材料材料紳料開催要領 H材料材料*材料紳

1.日時 2002年 6月 17 日(月) 13:30 ~ 17:00

2. 場所:労働スクエア東京第701会議室(東京・中央区新富 1-13・ 14)

3. プログラム(予定) :

13:oo~ 13:30 受付

13:30~ 15:30 講演: Informatics of Infrastructure (A Future of Computer Science)
Prof. Dines Bjomer (t巴chnicaI Unversity of Denmark)
[逐次サマリー通訳:岸田孝一 (SRA-KTL)]

15 :30~ 16:00 Break Tim巴

16:oo~ 17:∞ 自由討論 IT インフラストラクチャをめぐる諸問題
Discussant: SEA 幹事会メンバー有志

4. 参加費 SEA 正会員 2，∞o円，賛助会員 3，∞o円

5. 定員 50 名(先着順にて締切ります).

6. 申込み方法:下の申込用紙に必要事項を御記入の上. SEA 事務局まで E-M包l お申込みくださ い. 会場地図等をお
送りします.なお，参加費は当日会場受付にてお支払いください(領収書を差し上げます).申込受付後の
キャンセルは原則としてお断りします.

氏名(ふりがな) :

会社名:

部門・役職:

住所: (〒)

Tel:

E-Mail:

申込み宛先: ソフトウェア技術者協会(SEA)
E-Mail: sea@sea.or.jp

URL: http://www.iijnet.or.jp/sea

SEA 特別 Forum (June 2002) 参加申込用紙

Fax:

種別(該当欄にチェック):口正会員 (No.)口賛助会員 (No..___ _

参加費: 円

SBa
ゾフトウェア按術者協会

〒160-04泌4 東京都新宿区四香 3 ・ u 丸正ビル釘

Tel: 03 ・ 3356-1077 Fax: 03 ・ 3356 ・ 1072

E・mail: 蜘@s個.or.jp

URL: bttp:/畑ww.i祖net.or.jp/:誕a

	V13_N5_2002_001
	V13_N5_2002_002
	V13_N5_2002_003
	V13_N5_2002_004
	V13_N5_2002_005
	V13_N5_2002_006
	V13_N5_2002_007
	V13_N5_2002_008
	V13_N5_2002_009
	V13_N5_2002_010
	V13_N5_2002_011
	V13_N5_2002_012
	V13_N5_2002_013
	V13_N5_2002_014
	V13_N5_2002_015
	V13_N5_2002_016
	V13_N5_2002_017
	V13_N5_2002_018
	V13_N5_2002_019
	V13_N5_2002_020
	V13_N5_2002_021
	V13_N5_2002_022
	V13_N5_2002_023
	V13_N5_2002_024
	V13_N5_2002_025
	V13_N5_2002_026
	V13_N5_2002_027
	V13_N5_2002_028
	V13_N5_2002_029
	V13_N5_2002_030
	V13_N5_2002_031
	V13_N5_2002_032
	V13_N5_2002_033
	V13_N5_2002_034
	V13_N5_2002_035
	V13_N5_2002_036
	V13_N5_2002_037
	V13_N5_2002_038
	V13_N5_2002_039
	V13_N5_2002_040
	V13_N5_2002_041
	V13_N5_2002_042
	V13_N5_2002_043
	V13_N5_2002_044
	V13_N5_2002_045
	V13_N5_2002_046
	V13_N5_2002_047
	V13_N5_2002_048
	V13_N5_2002_049
	V13_N5_2002_050
	V13_N5_2002_051
	V13_N5_2002_052
	V13_N5_2002_053
	V13_N5_2002_054
	V13_N5_2002_055
	V13_N5_2002_056
	V13_N5_2002_057
	V13_N5_2002_058
	V13_N5_2002_059

