@SEAMAIL

Newsletter from Software Engineers Association

Vol. 13, Number 5 May, 2002

B X

R 5 0
Informatics of Infrastructure - A Future for Computing Science - Dines Bjorner 1
Abstract 1
Contents 2

1. Some Software Engineering Dogmas 5

2. On Infrastructures and Their Components 8

3. Work Flow Domains 13

4. Type/Value "Systems" 43

5. Conclusions 49

6. Bibliographical Notes 49
7. figures for Section 3.2

(¥}
—

V7 by T7RENERS

Software Engineers Asociation

VI b THNEHS (SEA) IE, V727D AR, av¥a—¥%2—%, gttt ¥y, = F2—¥, K% WEHL
E, FNFhEL--BBICBINATWAY 7 by 2 THNE T EIHEED,) LEHAHEORZEI T, THORBRPHK
HEEBICKR LD) 720D [H] L LT, 1985 RAICKILEhE L.

ZFOE%1EHIE, WML SEAMAIL O%fT, XBBLUMESTHEOEE, I F—/T—2Yav T/ Yo RIILkEDA
Ny bORE, BIURNOMBRHERGLEORRTYT. BREYH 200ANIZTELro-L2BHb ZokmL, BE, iddeiE
BHOOEZTEBEI T, SORLEMIA A N—FETHIZVADF L. EABBESED 25#52H2 T4, ZHIE, ERLUS
1, BT, BE, 58, U, LB, B0 ME TERILSATEY), oMo Ty ET# x> LTwId. 841, ®
w®, Mfi, BHEBT, ThERVL oA EHLTEY, ZOMOTHTH, AGESR 7+ — 7 A0 EMMICHEShTWET.

[BEOV 7 b2 T7RIZBUZ2RADFREILX, HHBEORETHS | LubhTwEd. ThFThHEICER, 20700
B LHEMANZZXLHBRIF TV LI ICBbhES. SEA IR,) LEREZHINL, ThrbFTITERLEHEZE
BLTTE-VEEZTVEY. WEFTHERICE ZPo7Z0H LWwWTO 7y vatv- YA I7 41 DRBODHIZ, €0
b, HRlOBhERLTLZS WV,

AREE . FH#EOL
BERSE . RAECN BELH BHY -k EHOE PHFS

BE FEEER KB FKE—H BHFR BEE MMEE KRR
EEE EEME EEE_E FERF FEEE pHEH KEES
FREFHE T FNTE FaESE WmUER PR
BEHEG RRAK TG FEEAS

EBRE . RFHFE-
SEEEE . EAB HHML

SESHEFEA BESESSIGENY) EAME HPHE—BR 8 —
HESHSSIGEDU) : EBiE HEE_E ZHZEH SPENE=
v b7 — 27 5F4(SIGNET) : ARW HAFEE
7ut 2584 (SEA-SPIN)) : RSk EEME &L HP—k mUE BTG
T4 =AYy FGFEGIGPM) | AK_E FREX REEE EFEM REH (LEFE

TEBHEEA BITESER | EHHER AHE REFE MILME
HOESCES | il BEFRIE JLFRESA
BEHEXE WHERT A HE AGHR FEEH
M LE#EE KEES FR—E
[LEE . A7 feikleRE A#—BP
FALSE AL FHTE MBS

RBSBESH : Vx—TAh1—YAF4LX SRA :PFU 77a3vA74X HETEMZER BL#&
+Lr0YV 7 27 FX /Y BLELIT7-TA-¥— FHEVVa-—-3 X
Y¥4x 1% Arory BLER 77T F) 1A RETHE
YI— FUFIALY¥—FaFb NITF—% ¥¥»n f#@Har¥a—%
BFEAAF F—F¥727/0Y—X SRAWHABE HFEREMER NM~vv 2R
(LA E25%t)

S.EAMAIT L Viotli Sl 3 SSNTatesh 200245A3 1 HEIT WEAN FHF—
BTN V7 b= TEMERS (SEA)
T160-0004 EE#HHFEXMNE3 —12 AEELVSF
T: 03-3356-1077 F: 03-3356-1072 sea@sea.or.jp
ENRIFT A& MEH T130-0013 RREAEHXGE A4 -3 —1 4
sEffi 500 (FEEMZRK)

Message from Editor Seamail Vol.13, No.5

RSB D 5

w

:m%u%m,zﬂuﬁ&éntLMwamWGV£—b%ﬁ%?a?ﬁthﬁ,sﬁoﬁéuﬁ
= | T4 b 5455 Forum O3B E AT Dines Bjomer 564475, BERHLLTHNI b2 TeRmLAEDL
hféiLtmf,%mmu§MT§&wﬁ&®ﬁﬁb%i,@N—V%ﬂwfﬁﬁactuLiLt

WR

Bjorner 25413, HAMAMHSE VDM OREETHY, I—0 v /82B1) % Formal Approach NDER - Eik
EFORLAYE LTOERIE, TTICSEA RBEDALZSALHFMOEY) TY.

WRW

$7-, BENET, vAHACRLSNAEEKS - BV 7 by = THEHER (UNUIST) O#fUFTR
LT, BMRRLEICHTAEEY 7 by 2 THFOBAZBRLT, MOMWEEBERASAILL.

FRWR

wAaWMbnfu,W%iu%,mﬁf@@%%%mmTv%wmumsﬁ%v—7>avi@%ﬁ
iR L, WAansEHBHAWELEEE L. :

HRRRW

%@%ﬁwtﬁwtﬁiu,éé:aoﬁﬂvx%A-b?7»f$%#n&otx5&n&%u£w
54>751b57%*@&%3:Uﬁ@u##bb%ﬁ%umLf,%ﬁ&ﬂ%vV7bﬁLTI$ﬁE
DL LB CEBTE»PEEEHICHLDETT. Lol Y EBFHEALZS .

<0 g% g4 9 AP

Informatics of Infrastructures®
A Future for Computing Science

Dines Bjgrner
Computer Science and Engineering
Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark
E-Mail: db@imm.dtu.dk

14th of May 2002

Abstract

After some introductory characterisations of computer science, computing science,
and (computing systems cum) software engineering, we briefly discuss the dogmas of a
domain engineering oriented and a formal techniques based approach to software engineer-
ing. Then we try delineate the concepts of infrastructure and infrastriucture components.
We illustrate the concept of infrastructure by hinting at some concrete and abstract do-
main models of infrastructure components: Railway systems, electronic commerce, logistics,
health—care, and transaction script work flows; and at two models of varieties of views of
‘information’ (type/value) entities: Graphical user interface (GUI) and relational database
systems, and document systems. :

The informal and formal examples of the paper are mere sketches. They serve to
indicate somewhat uncommon aspects of what has to be dealt with in domain models

of infrastructure component systems. And they serve to indicate that such models are’

composed from diverse, yet logically related concepts. Some such examples are teasers,
some contain, perhaps, an eye— or mind—-opener.

The paper ends with some reflections on réles of semiotics: Pragmatics, semantics,
and syntax; of method and methodology principles, techniques and tools, in particular
such which can be grouped under general conceptualisations such as property— and model-
—orientedness, denotational versus computational models, hierarchical and compostional
model-building and —presentation, models of time, space and time/space, configurations
as compositions in a spectrum between contexts and states, etc., domain abstraction and
modelling of domain attributes, stake—holder perspectives, and domain facets, require-
ments projection, instantiation, extension, and initialisation, and software design issues
such as architecture, component design, modularisation (object—orientedness), etc.

The aims of the paper are to present an overview of programming methodological
issues supported by a number of illustrative example hints, so as to better achieve the
objectives of the paper which are to suggest that proper professional education and training
in informatics is based on courses with a fair selection of computer science topics, and
with a heavy emphasis on topics in computing science cum programming methodology —
cum software engineering; to suggest that “formal methods” is not a course one gives in
separation from all other informatics courses, but that ‘formal techniques’ are an integral

*Extended text of a (shorter) talk presented at SEA Seminar, Tokyo, Monday June 17th, 2002

71
2

T3

T4

5

6

7

T8

2 SEA Seminar, Tokyo: — Informatics of Infrastructures

part of all computing science and software engineering courses; and to suggest that maybe
the borders between AI and software engineering constitute un-natural divisions.

Contents
1 Some Software Engineering Dogmas 5
1.l CSBCSEHSE . i sav s s s snsissisommnss wumessnmnisds 5
1.2 Informatics P 5
1.3 A Triptych Software Engineering 5
1.31 TheDPogma s s s « « 2 v s ms % Foumiin svs sreie s s & % o @'s 55 s 5
1.3.2 Some Issues of Domain Engineering 6
TheFacets: < « - : s s 569 65 s w06 5@« s MG G R G E EE 6
The Evidence: e 6
On Documentation in General: 6
1.3.3 Some Issues of Requirements Engineering 6
Domain Requirements: 7
Interface Requirements: 7
Machine Requirements:o 7
1.3.4 Some Issues of Software Design 7
1.4 Formal Techniques it 8
141 Method - : v sswssnasssmsiss @@ sdesnssssssssss 8
1.42 Methodology e e 8
2 On Infrastructures and their Components 8
2.1 The World Bank Concept of Infrastructure 8
2.1.1 A Socio-Economic Characterisation 9
2.1.2 Concretisations ittt e e 9
213 Discussion : « s s ¢ s s S s § 5 ¥ L P EEE © w EEEE S 0SB @ e 9
2.2 The UNU/IIST Concept of Infrastructure 9
2.3 “What is an Infrastructure ?” S EmEen § R B G A% W R WL RS 9
2.3.1 An Analysis of the Characterisations 9
2.3.2 The Question and its Background 10
Denotational Engineering: 10
Concurrency Engineering: 10
Type/Value Engineering: 11
Logics, Agents and Language-based Knowledge Engineering: 12
Computer SCIeNCe: : s s o 5 « s 5 s w § i s 5 & 6 @ Bob & & @ s W o 5 5w 12
Semiotics: Pragmatics, Semantics & Syntax: 12
Discussion: zzz s s s sas s smen s n g i v g @25 F B E &S0 & 5 13
2.3.3 A Third Attempt at an Answer 1 e 2 o rasn i) @ e B B 13
3 Work Flow Domains 13
3.1 Work Flows and Transactions 13
32 Railways. s mmmedl NERE 14
321 OnRailwaySystems, 14
3.2.2 A Hierarchical Narrative: Nets, Lines, Stations and Units 14
3.2.3 A Formalisation: Nets, Lines, Stations and Units 15

© Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 3

3.2.4 A Compositional Narrative: Unit States, Routes and Train Movement 16

3.2.5 A Formalisation: Unit States, Routes and Train Movement 17
3.26 Discussionl e e e e e e 17
3.3 Electronic Administration and Business 19
3.3.1 Traders: Buyersand Sellers 20
3.3.2 Traders: Agentsand Brokers 20
3.3.3 Schematic Transactions 20
3.34 Formalisationof Syntax 21
335 ~“TheMarket?’: : s s s csci s vnabs sraopmissd oo gn 9s 22
3.3.6 Formalisation of Process Protocols 22
Annotations: . :'. .5 ¢4 i s s e s e e v n e s e e w w e e 23

Annotations: : v s s wwss o s s svss v s v e smE s 8w e 23

3.3.7 Requirements e 25
Projection Synopsis: L oo 25
Instantiation Synopsis: L. L. 25
Extension Synopsis: Lo oL 26
Initialisation Synopsis: L L 26

338 Discussion : : - « s s 5 a5 5 s 8 s BB F S A PR FEFE® B B BB S 26
34 LOBISEICS « o« o v s w s wp e v s Sm s @ ams omdessidessesnsness s s 26
341 InformalViewt eiioeennn 26
Freight Transport:ot 26
Logistics Nets: . v svssssummess s mms ¥ oo s®ess 27

A Freight Transport Trace: 27

The Dynamic State of A Logistics Net: 27
Clients: : s s s s s s s o s s s mass @8 amn s 5@ &5 Bms s 6 as s 27
Logistics Firms: 27
Transport Companies:, 28

Hubs: T S el A L 28
Conveyors: : : sz oo sea b @@ MA@ s s FIFEEE LD RD EF ® @ 8 28

3.42 System Formalisation 28
Btatess v . o s s s d ss e P EARD A 8 5 HASE B D TE TS A S @ o 29
System Process: 29
Transaction Message Types: 29
Chafifils: o « o v n s n o s mmsl 55 600 a g meme o aonsbsnsss 29

3.43 Client Formalisation 30
CLent TYPes: : » s s ¢ s s v we b o s o ms s s mm s s s & semss 30

Client Auxiliary Functions: e ARkl o' e v 8 g 30

Client Processes: = . 7. « « = s s s 5 s 5 59 8 66 s & ¢ o & 6 5w s s o 31

3.44 Logistic Firm Formalisation 32
Function TYPes: « ¢ wa s Tu i u's s #'s sissmmn o me o5 s 0 om0 32
Logistics Firm Processes: 32

Client Initiated — Logistics Firm Transactions: 33
Logistics Firm Initiated — Client Transactions: 33

845 Disclssion .. « s+ v s s s ® @ 6 & & 6 & 5 0 80w 8 e o wwa o s BE W 34
3.5 Health—care i it ittt e e e 34
3.5.1 The System States and Process 34
352 TheChannels 35

14th of May 2002, 12:16 © Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

4 SEA Seminar, Tokyo: — Informatics of Infrastructures
3.5.3 Client 4> Medical Doctor 35
3.5.4 Remaining Interactions 37
3:D:5 DISCUSSION i = « s wm ¢ ¢ 4 3 8 8 G % 5 5 § 6 GRS & 5 5 5 5 5 o m oo s 37

3.6 Transaction Scripts 37
3.6.1 TheProblem 37
3.6.2 Clients, Work Stations, Scripts and Directives 37
3.6.3 A Simple Model of Scripts 38

Formalisation of Syntax: 38
Annotations I: 38

3.6.4 A Simple Model of Work Flow 39
Formalisation of Semantics — The Work Flow System:. 39
Annotations II: 39
Formalisation of Semantics — Clients: 39
Annotations IIT: L L 40
Formalisation of Semantics — Clients Continued: 40
Annotations IV: 40
Formalisation of Semantics — Work Stations: 40
Annotations V: e 41

3.6.5 Discussiont e e e e e e 41
3.7 Discussion —So Far! 42
Interpretation as Health—care System: 42
General Comments: 42

4 Type/Value “Systems” 43

4.1 Intuition L e e e e e e e e 43
411 TheProblem i 43
4.1.2 Patient Medical Records 43
4.1.3 Bill-of-Lading 43
414 Product Catalogie . « « « o s s ¢ « s v s 5 s s siow o s s 56w es s 43
4.1.5 Discussionttt e e e e e e e e e e e e e e e e e e 44

4.2 Documents: Originals, Copies, Editions and Physics 44
4.2.1 Originals, Mastersand Copies 44

Nartative: « x « s » o s @ mos s 5 8 % 558 ¢ 5 8 S &M .5 5 5 5 8 5 &8 5 44
Formalisation:o 44
Comments: .. : :: awmoess s b mwd i s 6 nEaeisisshesae 44
AXIOmS: e e e e e e e e e 45
422 Editions e e e e e e 45
4.2.3 The Physicsof Documents. 45
Narrative: o e e e e e e e 45
Formalisation of Document Locatability: 46
Monotonicity:o e e e e e 46
424 IDNSCUSSION. 4« £ 5 = 5 5 s s s 65 5 5 8 B @5 § 6§ 8 B o8 @6 & 5 8 &6 %@ 46
4.3 GUIs: Graphic User Interfaces and Databases 47
4.3.1 GUIs: Graphic User Interfaces 47
The GUI Display: o ittt 47
GUI Types & Values: 47
432 DataBases e e e 48

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 5

433 DIiSCUSSION & « v s ¢ + s mm s 8 ¢ 8 & B s @ ¢ 5 5 § s LEe G HEE s 5§ & 48

44 DISCUSSION : « ¢ wmmm ¢ ¢ 3 ¢+ w @ m® 8 5 8 5 556 5358 0B SeB®B.a 685 5 48

5 Conclusion 49
5.1 Summary and Discussion 49
An Apology: 49

5.2 “What is an Infrastructure ?” oL 49
5.2.1 A Possible Impact of Computing Science upon Infrastructures. 49

6 Bibliographical Notes 49
7 Figures for Section 3.2 51

1 Some Software Engineering Dogmas

11 CS o CS o SE

Computer science, to me, is the study and knowledge of the artifacts that can “exist” in-
side computers: Their mathematical properties: Models of computation, and the underlying
mathematics itself.

Computing science, to me, is the study and knowledge of how to construct those arti-
facts: programming languages, their pragmatics, their semantics, including proof systems,
their syntax; computing systems: Operating systems, database management systems, data
communication systems, &c., and applications — such as we shall illustrate some today. The
difference, between computer and computing science, is, somehow, dramatic.

Software engineering, to me, spans domain engineering, as we shall soon characterise
it, requirements engineering, and software design. And: Software engineering is the art,
discipline, craft, science and logic of conceiving, constructing, and maintaining software. The
sciences are those of applied mathematics and computing. I consider myself both a computing
scientist and a software engineer.

1.2 Informatics

Informatics, such as I see it us a combination of: Mathematics, computer & computing science,
software engineering, and applications. Some “sobering” observation: Informatics relates to
information technology (IT) as biology does to bio—technology; Etcetera !

1.3 A Triptych Software Engineering
1.3.1 The Dogma

The Triptych Dogma: Before software can be designed, we must understand the requirements.
Before requirements can be expressed we must understand the (application) domain.
Software engineering thus consists of the engineering of domains, engineering of require-
ments, and the design of software. Software development, to us, encompasses all three.
In summary, and ideally speaking: We first describe the domain: D, from which we define
the domain requirements; from these and interface and machine requirements, ie. from R, we

14th of May 2002, 12:16 © Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

9

lisboa/intro

T:1!

7:20

T:15

T:18

20

6 SEA Seminar, Tokyo: — Informatics of Infrastructures

specify the software design: S. In a suitable reality we secure that all these are properly
documented and related: D, S |= R, when all is done !

In proofs of correctness of software (S) wrt. requirements (R) assumptions are often
stated about the domain (D). But, by domain descriptions D we mean “much more” than
just expressing such assumptions.

1.3.2 Some Issues of Domain Engineering

The Facets: To understand the application domain we must describe it. We must, I believe,
describe it, informally (ie. narrate), and formally, as it is, the very basics, ie. the intrinsics;
the technologies that support the domain; the management & organisation structures of the
domain; the rules & regulations that should guide human behaviour in the domain; those
human behaviours: the correct, diligent, loyal and competent works; the absent-minded,
“casual”, sloppy routines; and the near, or outright criminal, neglect. &ec.

In [1] we go into more details on domain facets while in the planned [2] we present a more
comprehensive view of domain engineering. Finally our lecture notes (cum planned book [3])
brings the “full story”.

The Evidence: We inform about the domain: Present a not necessarily descriptive synopsis
of it, emphasising, typically, the pragmatics, and the needs and ideas of the domain that might
lead to computing support.

We describe the domain: We rough sketch it, and analyse the sketches to arrive at domain
concepts. We establish a terminology for the domain. We narrate the domain: A concise
professional language description of the domain using only (otherwise precisely defined) terms
of the domain. And we formalise the narrative.

We analyse the narrative and the formalisation with the aims of: validating, “against”
domain stake-holders, and verifying properties of, the domain description.

On Documentation in General: In general there will be many documents for each phase?,
stage? and step® of development: Informative documents: Needs and concepts, development
briefs, contracts, &c. Descriptive/prescriptive documents: Informal (rough sketches, ter-
minologies, and narratives) and (formal models) analytic documents: Concept formation,
validation, and verification. These sets of documents are related, and occur and re—occur for
all phases.

1.3.3 Some Issues of Requirements Engineering

Requirements are about the machine: The hardware and software to be designed.

We see requirements prescriptions as composed from three viewpoints: Domain, interface
and machine requirements.

We now survey these.

!Domain, requirements and software design are three main phases of software development.

2Phases may be composed of stages, such as for example the domain requirements, the interface require-
ments and the machine requirements stages of the requirements phase, or, as another example, the software
architecture and the program component design stages of the software design phase.

3Stages may then consist of one or more steps of development, typically data type reification and operation
transformation — also known as refinements.

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 7

Domain Requirements: Requirements that can be expressed solely with reference to, ie.
using terms of, the domain, are called domain requirements. They are, in a sense, “derived”
from the domain understanding. Thus whatever vagueness, non—determinism and undesired
behaviour in the domain, as expressed by the respective parts of the domain intrinsics, support
technologies, management & organisation, rules & regulations, and human behaviour, can
now be constrained, if need be, by becoming requirements to a desirably performing computing
system.

The development of domain requirements can be supported by principles and techniques
of projection: Not all of the domain need be supported by computing — hence we project
only part of the domain description onto potential requirements; instantiation: Usually the
domain description is described abstractly, loosely as well as non—deterministically — and
we may wish to remove some of these properties; extension: Entities, operations over these,
events possible in connection with these, and behaviours on some kinds of such entities may
now be feasibly “realisable” — where before they were not, hence some forms of domain
requirements extend the domain; and initialisation: Phenomena in the world need be rep-
resented inside the computer — and initialising computers is often a main computing task
in itself, as is the ongoing monitoring of the “state” of the ‘outside’ world for the purpose
of possible internal state (ie. database) updates. There are other specialised principles and
techniques that support the development of requirements.

Interface Requirements: Requirements that deal with the phenomena shared between
external users (human or other machines) and the machine (hardware and software) to be
designed, such requirements are called interface requirements. Examples of areas of concern
for interface requirements are: Human computer interfaces (HCI, CHI), including graphical
user interfaces (GUIs), dialogues, etc., and general input and output (examples are: Process
control data sampling (input sensors) and controller activation (output actuator)). Some
interface requirements can be formalised, others not so easily, and yet others are such for
which we today do not know how to formalise them. We shall later, in Section 4.3 give an
example of a GUI prescription.

Machine Requirements: Requirements that deal with the phenomena which reside in the
machine are referred to as machine requirements. Examples of concerns of machine require-
ments are: performance (resource [storage, time, etc.] utilisation), maintainability (adaptive,
perfective, preventive, corrective and legacy—oriented), platform constraints (hardware and
base software system platform: development, operational and maintenance), business process
re—engineering, training and use manuals, and documentation (development, installation, and
maintenance manuals, etc.).

1.3.4 Some Issues of Software Design

Once the requirements are reasonably well established software design can start. We see
software design as a potentially multiple stage, and, within stages, multiple step process.
Concerning stages one can identify two “abstract” stages: The software architecture design
stage in which the domain requirements find an computable form, albeit still abstract. Some
interface requirements are normally also, abstract design-wise “absolved”, and the pro-
gramme component design stage in which the machine requirements find a computable form.

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:23

31
lisbo:

7:33

Ti28

T:31
lisboa/infra

8 SEA Seminar, Tokyo: — Informatics of Infrastructures

Since machine requirements are usually rather operational in nature, the programme compo-
nent design is less abstract than the software architecture design. Any remaining interface
requirements are also, abstract design—wise “absolved”.

This finishes our overview of the triptych phases of software development.

1.4 Formal Techniques

A significant characteristics in our approach is that of the use of formal techniques: formal
specification, verification & model checking.

1.4.1 Method

The area as such is usually — colloquially — referred to as “formal methods”. By a method
we understand a set of principles of analysis and for selecting techniques and tools in order
efficiently to achieve the construction of an efficient artifact. By formal specification we mean
a specification by means of a formal language: One having a formal semantics, a formal proof
system and a formal syntax. In this paper we shall rather one-sidedly be illustrating just
the specification side and not at all show any verification issues. And in this paper we shall
rather one-sidedly also be using only one tool: The Raise Specification Language: RSL [4, 5].

A method can never be formal: The principles for selecting techniques and tools, and the
principles of concept analysis cannot be formalised, let alone mechanised. Humans perform
these tasks.

Quite a considerable set of techniques and tools can be formalised. So we prefer the term
‘formal techniques: Specification and verification’.

1.4.2 Methodology

By methodology we understand the study and knowledge of (varieties of) methods, in par-
ticular techniques and tools: Petri nets, VDM (VDM-SL), Z, RAISE (RSL), B, etc., CSP,
State—charts (Statemate), etc., CASL, Cafe-OBJ, Maude, etc. even “UML” !

2 On Infrastructures and their Components

In the period 1991-1997 I was founding and first director of UNU/IIST: The UN University’s
International Institute for Software Technology, located, then as now, in Macau, near Hong
Kong and Canton. My view of the infrastructure concept arose then. UNU/IIST was placed
in a UN + World Bank environment*. In that environment such terms as: infrastructure, self-
—reliance, and sustainable development, were part of the daily parlance. How was UNU/IIST
to respond to this. It had to ! And, I claim, we “informaticians” are perhaps best at trying
to understand the infrastructure concept.

2.1 The World Bank Concept of Infrastructure

One may speak of a country’s or a region’s infrastructure.® But what does one mean by that ?

* Also known as the Bretton Woods Institutions.

*Winston Churchill is quoted to have said, during a debate in the House of Commons, in 1946: ... The
young Labourite speaker that we have just listened to, clearly wishes to impress upon his constituency the fact
that he has gone to Eton and Oxford since he now uses such fashionable terms a ‘infra-structure’ ...

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 9

2.1.1 A Socio—Economic Characterisation

According to the World Bank,® ‘infrastructure’is an umbrella term for many activities referred
to as ‘social overhead capital’ by some development economists, and encompasses activities
that share technical and economic features (such as economies of scale and spill-overs from
users to non-users).

Our interpretation of the ‘infrastructure’ concept, see below, albeit different, is, however,
commensurate.

2.1.2 Concretisations

Examples of infrastructure components are typically: The transportation infrastructure sub-
—components (road, rail, air and water [shipping]); the financial services industry (banks,
insurance companies, securities trading, etc.); health—care; utilities (electricity, natural gas,
telecommunications, water supply, sewage disposal, etc.); and perhaps also education, etc. ?

2.1.3 Discussion

There are thus areas of human enterprises which are definitely included, and others areas
that seem definitely excluded from being categorised as being infrastructure components.
The production (ie. the manufacturing) — of for example consumer goods — is not included.
Fisheries, agriculture, mining, and the like likewise are excluded. Such industries rely on
the infrastructure to be in place — and functioning. What about the media: TV, radio
and newspapers 7 It seems they also are not part of the infrastructure. But what about
advertising and marketing. There seems to be some grey zones between the service and the
manufacturing industries.

2.2 The UNU/IIST Concept of Infrastructure

UNU/IIST took” a more technical, and, perhaps more general, view, and saw infrastructures
as concerned with supporting other systems or activities.

Software for infrastructures is likely to be distributed and concerned in particular with
supporting communication of information, people and/or materials. Hence issues of (for ex-
ample) openness, timeliness, security, lack of corruption, and resilience are often important.®

2.3 “What is an Infrastructure ?”

We shall try answer this question in stages: First before we bring somewhat substantial
examples; then, also partially, while bringing those examples; and, finally, in a concluding
section, Section 5.2 of this paper. The answer parts will not sum up to a definitive answer !

2.3.1 An Analysis of the Characterisations

The World Bank characterisation, naturally, is “steeped” in socio—economics. It implies, I
claim, that what is characterised is well-functioning. It could, possibly, be criticised for
not giving a characterisation that allowed one to speak of well-functioning, and of not so

®Dr. Jan Goossenarts, an early UNU/IIST Fellow, is to be credited with having found this characterisation.
"In the “mid 1990’s” since that is what I can vouch for.
®The above wording is due, I believe, to Chris George, UNU/IIST.

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:36

37

10 SEA Seminar, Tokyo: — Informatics of Infrastructures

well-functioning infrastructures. It cannot be used as a test: Is something presented an
infrastructure, or is it not 7 And it begs the question: Can one decompose an infrastructure
into parts, or as we shall call them, components 7

The UNU/IIST characterisation, naturally, is “steeped” in systems engineering. It seems
we were more defining requirements to the business process engineering of an infrastructure
(component), than the domain — which, as for the World Bank characterisation, assumes a
concept of “good functionality.”

We shall, despite these caveats, accept the two characterisations in the following spirit:
For a socio—economically well-functioning infrastructure (component) to be so, the character-
isations of the intrinsics, the support technologies, the management & organisation, the rules
& regulations, and the human behaviour, must, already in the domain, meet certain “good
functionality” conditions.

That is: We bring the two characterisations together, letting the latter “feed” the former.
Doing so expresses a conjecture: One answer, to the question” “What is an infrastructure”, is,
seen from the viewpoint of systems engineering, that it is a system that can be characterised
using the technical terms typical of computing systems.

2.3.2 The Question and its Background

The question and its first, partial answer, only makes sense, from the point of view of the
computer & computing sciences if we pose that question on the background of some of the
achievements of those sciences. We select a few analysis approaches. These are aspects of
denotational, concurrency, type/value, and knowledge engineering approaches, as well as a
computer science approach.

An important aspect of my answer, in addition to be flavoured by the above, derives from
the semiotics distinctions between: pragmatics, semantics, and syntax. So we will also discuss
this aspect below.

Denotational Engineering: In the denotational engineering view we associate to syntactic
entities a meaning expressed, usually as a mathematical function. Normally we would expect
the homomorphism lemma to apply: The meaning, M, of a simple, “atomic” entity, a, is a
simple function, M(a) = F(a). The meaning, M, of a composite entity, (c1,¢2,...,¢n), is a
function, #, of the meaning of the parts M(cy,ca,...,cn) = H(M(c1), M(c2),- .., M(cn)).
One may say that the denotational engineering view entails a model oriented view. For
mundane application domains such as railways, electronic commerce, health—care, logistics,
etc., how do we apply the principle of denotational engineering ? Well, we first look out
for suitable semantic types for the phenomena that we observe (viz., Train traffic, traces of
behaviours, etc.) (as associated with syntactic phenomena, ie. types (viz., time tables, bill-
—of-ladings (way bills), etc.)). Then we device of simple, primitive operations on semantic
values. Then we device of suitable syntactic abstractions. And finally we express the meaning
of the syntactic entities in terms of compositions of primitive operations.

Concurrency Engineering: In a concurrency engineering view, not necessarily ‘the’ view,
certain phenomena are seen, are abstracted as concurrently progressing and communicating
processes, very much in the sense of CSP. [6, 7, 8, 9] Processes — simple ones — are sequential:
Effecting, one-by—one changes to a process local state, while, now-and-then synchronising
with other processes, performing, as-it-were, “rendez—vous” with these and (usually one way)

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 11

communicating information. “Rendez—vous” model events. Similar characterisations can be
given for concurrency modelling using Petri Nets. Processes P — not so simple ones — rus
may “split” (||) into parallel ones: P = P; || P2 || ...|| Pn, or may decide (non—deterministic
external choice, []), depending on external events, between either of n alternative processes:
P=P1[] P2[] ---[] Pn, or may decide (non—deterministic internal choice, []), depending on
internal “events”, between either of n alternative processes: P =P1 [| Py [| ...[| Pn. Itis
these latter possibilities of non—deterministic choices, with their elegant algebraic laws, that
makes CSP so well suited to model human and technology behaviours of an actual domain.

CSP and Petri Nets provide a tool, and come with modelling techniques, with which to tackle
description of domains of infrastructure components.

7:50

T:46

Type/Value Engineering: By type/value engineering we mean the engineering of typed ‘ o1
information structures. In a view, not necessarily ‘the’ view, of type/value engineering — one
that is significant in the usually “paper laden” bureaucracies of the man-made, and oftentimes
public government operated or, at least, regulated infrastructure enterprises — information,
in the form of documents of various kinds, “float” around the infrastructure enterprises,
where this information may, or may not be structured, where it is subject to various kinds of
operations: “Readings”, edits (augmented updates), deposits in repositories (folders, files),
copyings, creations, destructions, etc., and where many other kinds of operations may be

performable. 47

More formally: There are types and values, and they relate: s

type
TYP, VAL
value

typ: VAL —» TYP

Values adhere to well-formedness, may be structured, and may be presented in many ways:
copied, time-stamped, located in space, or otherwise made unique. Their types may reflect
this, and operations creating values and operating upon values adhere to implied constraints:

value
wi_TYP: TYP — Bool
wif_VAL: VAL — Bool
create VAL: TYP x VAL 5 VAL
create_VAL(t,v) as v/
pre wi_TYP(t) A wf_ZVAL(v) A ...
post wi_VAL(t,v,v') ' 755
op: VAL x ... x VAL 3 VAL
op(vl,..,vn) as v)
pre wi_VAL(vl) A ... A pre wi_VAL(vn) A ..
post wf_VAL(vl,...,vn,v)

Type/value engineering typically applies denota.t:onal engineering principles and techniques.
We shall take a look at type/value engine nomena in Section 4.

14th of May 2002, 12:16 ‘_,,"-{'-' Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

12 SEA Seminar, Tokyo: — Informatics of Infrastructures

Logics, Agents and Language-based Knowledge Engineering: There is the knowl-
edge engineering view. In one, of several variants, of this view — and we shall only cover
that variant, albeit ever so briefly — one focuses on logics, agent behaviours and speech acts.

The logics area has two facets to it: The classical logics which are part also of the de-
notational, concurrency, type system, and formal techniques facets described and assumed
earlier, and the less classical logics of modal logics. Thus, by logics we here mean those of
the epistemic logics of knowledge & belief, the deontic logics of permission & obligation, the
modal logics of possibility & necessity, &c. Other logics are relevant — also when describing
domains: dynamic logics of action, defeasible, uncertainty and possibilistic logics, logics of
belief revision, &c. These are not just logics of Al and logic programming but also logics of
general domain engineering. Thus, to express understanding of phenomena in domains and
“derived” requirements entail, we find, extensive use of modal logics.

We present what may be termed the Al approach to “agency”, but intend to “lift” the AI
“agency” notions to apply, inter alia, to domain engineering as well as to software (require-
ments and design). Agents interact through communication. Agents come in groups: Multi
agent “systems”. Agents perform both competitive and co—operative tasks. Open multi
agent “systems” have agents serve different interests, autonomously and heterogeneously.
Just like humans ! Agent interaction (alphabetically listed)® involves arguments: Formation
of reasons, drawing of conclusions, and applying these actively; commitments, conversations,
co—ordination, dialogue, negotiation, obligation, planning, &c. In doing so agents deploy
various modal logics, and, as we shall next see: Speech acts.

Speech acts are characterised by: Locutions — The physical utterances of speakers; illo-
cutions — The intended meaning of speaker utterances; and perlocutions — The actions that
result from locutions. Wrt. illocutions, speech acts are often classified in the following five
performatives: Assertive, ie. statements of fact; directive, ie. commands, requests or advice;
commissive, eg. promises; expressive, eg. feelings and attitudes; and declarative which entail
the occurrence of an action in themselves. Obviously speech acts and agents relate strongly.
Speech act theories offer, I think, important concepts with which to model infrastructure
domains.

Computer Science: And then there is the computer science view: Computer science, as
claimed earlier, is concerned with the mathematical properties of the things that can exist
inside computers, and in particular with such things as: Computational models, complex-
ity, and types. Although phenomena of the infrastructure component domains are rarely
computable, one can still speak of functions, and of properties, although these might not be
computable or decidable. Hence the computer science view shall flavour the ways in which
we shall attempt to understand infrastructure component domains.

Semiotics: Pragmatics, Semantics & Syntax: The semiotics engineering view ascribes
primary importance to that which can basically not be formalised: The pragmatics, why we
do what we do, why we use certain linguistic constructs, why we ascribe certain meanings and
forms. The semiotics engineering view, on the basis of a clarified stand on pragmatics, then
proceeds to first think and act semantically: Searching for, finding, narrating and formalising

°The listing is extracted from my MSc student, Hans Madsen Petersen’s MSc pre-project report: Agent
Communication Languages and Speech Acts — and their Semantics, October 2001.

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 13

“deepest” meanings, most abstract, elegant and beautiful. Finally the “semiotics engineer”
selects suitable syntactic forms to designate the meanings (and “cover” the pragmatics).
The semiotics engineering view is itself one of pragmatics, “meta—pragmatically”, it is, for
example, applied in denotational as well as in type/value engineering.

Discussion: There are other views. But the above suffice. Why we have “gone to the
trouble” of enumerating and briefly explain the above computing & computer science views
will now be revealed in the section which immediately follows.

2.3.3 A Third Attempt at an Answer

A first concern of the socio—economics of infrastructures seems to be one of pragmatics: For
society, through state or local government intervention, either by means of publicly owned,
or by means of licensed semi-private enterprises, to provide infrastructure component means
for “the rest of society”: Private people and private (or other public) enterprises, to function
properly. Depending on “the politics of the day” provision of such means may, or may not be
subsidised. So efficiency and profitability of such infrastructure components were sometimes
not a main concern. The above observations certainly seems to have applied in the past.

With the advent of informatics, the confluence of computing science, mathematics (incl.
mathematical modelling), and applications, with computerisation made possible by affordable
information technology, the business process re-engineering of infrastructure components —
as made possible by domain modelling methods — forces as well as enables a new way of
looking at infrastructure components. = We therefore recapitulate the UNU/IIST view of
infrastructures.

Computing systems for infrastructures are distributed and concurrent, and are concerned
with the flow of information, people, materials,and control, and the manipulation of the
“flowed items”.

Concepts like denotations, concurrency, types, logics (including modal logics), agents and
speech acts, computational models, and semiotics (pragmatics, semantics and syntax) seems
to offer: a mind set associated with a vocabulary that “lifts” daily, short-range, and hence of-
ten short-sighted reasoning, and thus a framework for thinking about necessary infrastructure
process re—engineering.

So our “third try” at an answer to the question: “What is an Infrastructure ?”, is a
rather unconventional one: An infrastructure, as seen from the point of view of informatics
(mathematics @ computing science @ applications), is a challenge: A class of systems that
we need characterise both from the point of view of socio—economics, and from the point of
view of computing science, and to relate the two answers.

3 Work Flow Domains

3.1 Work Flows and Transactions

We exemplify four kinds of concrete work flow systems: railways, electronic business (Sec-
tion 3.3), freight transport logistics (Section 3.4), and health—care. All exemplify the move-
ment of information, materials and control. @~ We now “flip” through several examples of
domain descriptions. They are all reasonably substantial. But time does not permit us to

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:59

T:60

762
lisboa/wfs

T:64
T:65
T:66
67

771
ch9rai

14 SEA Seminar, Tokyo: — Informatics of Infrastructures

dwell on any one of them. I could have decided to show mere excerpts of formulas. Instead I
“flip” quickly — while leaving paper versions of the foils for your perusal.

3.2 Railways
3.2.1 On Railway Systems

Colloquially speaking, a railway system consists of the rail net: Lines between stations, and
stations; lines and stations as consisting of rail units: Linear, switches, crossovers, etc.; rail
units being in states, states implying the possibility of train movement along zero, one or
more paths of a unit; and the rail net thus definining open and closed routes around the
net, etc.; time tables and traffic: time tables prescribing train traffic: Movement of trains
along routes and over time, etc.; the rolling stock: carriages (passenger or freight), locomo-
tives; trains being composable from these, etc.; planning and operation: Planning and actually
carrying out the insertion or removal of rail units, lines and stations; time table construc-
tion based on available and/or obtainable rolling stock, statistics and expectations of traffic;
planning and handling the composition and decomposition of carriages into assembliews and
trains; planning and executing the scheduled maintenance of carriages and assemblies; plan-
ning and carrying out station, line, service facilities and train crew rostering further operations:
Passenger and freight inquieries, ticketing and reservation; etc. &c.

The railway domain thus is a multi-dimensional domain consisting of many, but highly
interrelated, iner-woven “sub-systems”.
70 Section 7 on page 51 illustrates, by figures, some of the above.

3.2.2 A Hierarchical Narrative: Nets, Lines, Stations and Units
771

ehbeails 1. A railway net consists of one or more lines and two or more stations.
2. A railway net consists of units.

3. A line is a linear sequence of one or more linear units.

4. The units of a line must be units of the net of the line.
5. A station is a set of units.
‘ 6. The units of a station must be units of the net of the statibn.
7. No two distinct lines and/or stations of a net share units.
12 8. A station consists of one or more tracks.

‘ 9. A track is a linear sequence of one or more linear units.

\ 10. No two distinct tracks share units.

11. The units of a track must be units of the station (of that track).

12. A unit is either linear, or is a switch, or a is simple crossover, or is a switchable crossover,
etc.

© Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 15

13. A unit has one or more connectors.A linear unit has two distinct connectors, a switch
has three distinct connectors, crossovers have four distinct connectors, etc.

14. For every connector there are at most two units which have that connector in common.
15. Every line of a net is connected to exactly two, distinct stations of the net.

16. A linear sequence of units is a non-cyclic sequence of linear units such that neighbouring
units share connectors.

3.2.3 A Formalisation: Nets, Lines, Stations and Units

type :Tb::;!roill
N,L,S, Tr, U, C
value '
1. obsLs: N — L-set,
1. obsSs: N — S-set
2. obs_Us: N — U-set, o
3. obs_.Us: L — U-set TS
5. obs_Us: S — U-set,
8. obs_Trs: S — Tr-set
12. is_Linear: U — Bool,
12. is_Switch: U — Bool
12. is_Simple_Crossover: U — Bool,
12. is_Switchable_Crossover: U — Bool
13. obs Cs: U — C-set

value
16. lin_seq: U-set — Bool
lin_seq(q) =
let us = obs_Us(us) in
¥V i:U ¢ u € us = is_Linear(u) A
3 q:U* ¢ len q = card us A elems q = us A
V i:Nat « {i,i+1} Cindsq= 3 c:C *
obs_Cs(q(i)) N obs_Cs(q(i+1)) = {c} A
lenqg>1=>
obs_Cs(q(i)) N obs_Cs(q(len q)) = {}

77
ch9/s

14th of May 2002, 12:16 © Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

i
ch9/9rail3

16 SEA Seminar, Tokyo: — Informatics of Infrastructures

7. VN, LI"L «
{1,I'} C obs_Ls(n) A 1#£l'
= obs_Us(l) N obs_Us(l') = {}

7. VN, L, s:S »
1 € obs_Ls(n) A s € obs_Ss(n)
= obs_Us(l) N obs_Us(s) = {}

7. Vn:N,ss"S «
{s,;s"} C obs Ss(n) A s#s’
= obs_Us(s) N obs_Us(s") = {}

8. V s:S ¢ card obs_Trs(s) > 1

9. Vn:N,s:S, t:T
s € obs_Ss(n) A t € obs_Trs(s) = lin_seq(t)

10. V m:N, s:S, t,t';T »
s € obs_Ss(n) A {t,t'} C obs_Trs(s) A t#t'
=> obs_Us(t) N obs_Us(t') = {}

14. Vn:NeVcCe
c € U {obs_Cs(u) | u:U * u € obs_Us(n) }
= card{ u | w:U * u € obs_Us(n) A ¢ € obs_Cs(u) } <2

15. Vn:N,l:L + 1 € obs_Ls(n) =
3s,s"S + {s,s'} C obs Ss(n) A s#s' =
let sus = obs_Us(s), sus’ = obs_Us(s), lus = obs_Us(l) in
Ju:U » u € sus, u":U » v’ € sus’, u”,u”:U + {u",u"} C lus »
let scs = obs_Cs(u), scs’ = obs_Cs(u'),
lcs = obs_Cs(u”), lcs’ = obs_Cs(u") in
Il ec:Cec#c AscsNles = {c} A ses’ Nles’ = {c'}
end end '

3.2.4 A Compositional Narrative: Unit States, Routes and Train Movement
1. A path, p: P, is a pair of connectors, (c, ¢’), of some unit.!°
2. A state, o : X, of a unit is the set of all open paths of that unit (at the time observed).!

3. A unit may, over its operational life, attain any of a (possibly small) number of different
states w, Q.

4. A route is a sequence of pairs of units and paths —

10A path of a unit designate that a train may move across the unit in the direction from c to ¢’. We say
that the unit is open in the direction of the path.
1 The state may be empty: the unit is closed.

14th of May 2002, 12:16

© Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

A Future for Computing Science — Monday June 17th, 2002 17

5. such that the path of a unit/path pair is a possible path of some state of the unit, and
such that “neighbouring” connectors are identical.

6. An open route is a route such that all its paths are open. 78
7. A train is modelled as a route.

8. Train movement is modelled as a discrete function (map) from time to routes such that
for any two adjacent times the two corresponding routes differ by at most one of the
following: a unit path pair has been deleted from (one or another end) of the open
routes, or (similarly) added, or both, or no changes — a total of seven possibilities
(i—vii).

3.2.5 A Formalisation: Unit States, Routes and Train Movement
79

type ch9/Sraild
1 P=CxC
2 ¥ = P-set
3 Q= X-set
4 RR=(UxP)
5 R={| r:R' + wfR(r) |}
7 Trn =R
8 Mov=T # Trn
value

2 obsX: U X
3 obs2: U —>Q

5 wfR: R' » Bool
wfR(r) =
Vi:Nat *i € inds r let (u,(c,c)) = r(i) in
(cc") € U obs Q(u) A i+l € inds r =
let (_,(c",_)) = r(i+1) in ¢’ = ¢" end end

6 open_R: R — Bool
open_R(r) =
V (u,p):UXP ¢ (u,p) € elems r A p € obs X(u)

8 wfMov: Mov — Bool
wf Mov(m) = card domm > 2 A
Vit"Tett'e dommAat <t
A~ItTet" edommAt<t'<t' =
let (r,r) = (m(t),m(t’)) in clauses (i) — (vii) end

3.2.6 Discussion

On the basis of domain models like the above we have worked out requirements, and, in cases,
the design of software for:

14th of May 2002, 12:16

© Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

18 SEA Seminar, Tokyo: — Informatics of Infrastructures

Times —>
SationA| . === |sA
Station B S S S S = b, S sB
LT S S R RN ST g S sC
Staton D I e X :___,"l : sD
StaionE| ¢ C....il..o. sE
|
|
Station F| ---" ... *
1 u © 3 W 5 16 v

Figure 1: A Running Map

1. Running Maps: A UNU/IIST project for the Chinese Railways. Rescheduling trains when
- delayed.

2. Marshalling: The planning of freight train decomposition and composition. An ongoing
project.

A Railway Marshalling Yard

"THE YARD"
} Misc. - N Miso.
i v
‘ N
IN e . L S ouT
s, R s R
S 7
HUMP V4
- /
N L

.4
Miscellaneous Sidings

Figure 2: A Freight Train Marshalling Yard

Figure 2 shows a marshalling yeard. The “hump” is to be thought of as located in the
highest point in the terrain. “The Yard” tracks are all to be thought of as sloping down,
away from the hump, in direction left—to-right.

83

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 19

7.

8.

Crew Rostering: Albena Strupchanska et al.: An AMORE!? Project. Periodic allocation
and scheduling of staff to passenger trains, based on a Dutch Railways’ case study.

Passenger Train Composition, Decomposition and Shunting: Panagiotis Karras et al.: An
AMORE Project. Addition of and removal of carriage assemblies from “running” trains,
based on a Dutch Railways’ case study.

Passenger Train Maintenance Planning: Martin Penicka et al.: An AMORE Project. Plan-
ning day or night, at station, or between station, exchange of train assemblies in prepa-
ration for visits to maintenance stations, based on a Dutch Railways’ case study.

Control of Single Line Traffic: Anne Haxthausen and Jan Peleska: FM99. A problem of
German private local railway companies.

Station Interlocking: Kirsten Mark Hansen PhD Thesis.

Railway Level Crossing: Jens Ultik Skakkebaek PhD Thesis.

And many other railway related projects.

3.3

Electronic Administration and Business

We generalise a concept of electronic trading to apply across a full spectrum of Government
institutions, G, businesses (enterprises), B, and citizens, C. and thus to include as full a

variety of G2G, G2B, G2C, B2G, B2B, B2C, C2G, C2B, C2C, transations.

e =

=
BUYER

Inquiry

Order, Decline, Wrong
Confirm, Decline, Wrong

Delivery,Sorry s .
Accept Reject Wrong

Jnvoice, Wrong

Payment,Wrong

=
ST |

E(>Buyuiniiﬁve

C"Folws,asam\semmluor

Refund

Seller initative -

Figure 3: “Classical” E-Trading Transactions

12 AMORE: Algorithmic Methods for Optimising Railways in Europe

14th of May 2002, 12:16

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:85
lisboa/wfsemkt

9

9

89

7:92

20 SEA Seminar, Tokyo: — Informatics of Infrastructures

In the case of the government, business and citizen infrastructure interactions we can
postulate the following domain, ie. not necessarily computer & electronic communication
supported, transactions:

G2G: Government institutions, G, buy services from other G, and G sell services to other
G. The G pay with monies (obtained through taxes, etc.), respectively offer free services, in
return. G2B: G buy services, or request taxes, from businesses (B), and pay, respectively
offers free services, in return. G2C: G buy services (hire), or request taxes, from citizens
(C), and pay, respectively offer free services, in return. B2G: Businesses (B) buy services
from G, and pay G for these either through having already paid taxes or by paying special
fees. B2B: B buy merchandise or services from other B, and B offer merchandise or services
to other B. B usually pay for these outright. B2C: B buy services from citizens: ie. hire
temporary or permanent staff (employment), and B pay for these through salaries. (C2G:
Citizens (C) obtain services from G (passport, drivers licence, etc., health—care, education,
safety and security, etc.) and C pay for these either by paying special fees or through having
already paid taxes. C2B: C buy merchandise from B, and C pay for this. C2C: Two or more C
together enter into political “grass—root” organisations, or leisure-time hobby club activities,
or just plainly arrange meetings (incl. BBQ parties); and the two or more C “pay” for this by
being “together”.

3.3.1 Traders: Buyers and Sellers

Above we have stressed that also government (institutions) are part of the more general
concept of E-Business, some aspects of contractual obligations, and a seeming “symmetry”
between partners to any such contract (ie. buy, sell, etc.). As such we have stressed that “The
Market” consists of buyers and sellers, whom we, as one, refer to as traders.

3.3.2 Traders: Agents and Brokers

An agent, to us, while we are still only discussing the domain, is a trader that acts (in a
biased manner) on behalf of usually one other trader (either a buyer, or a seller), vis—a-vis
a number of other traders (sellers, respectively buyers), in order to secure a “best deal”. A
broker, to us, while we are still only discussing the domain, is a trader that acts (in a neutral
manner) on behalf one or more buyers and one or more sellers in order to help them negotiate
a “deal.”

3.3.3 Schematic Transactions

Sequences of contractual transactions can be understood in terms of “primitive” transactions:

A buyer inquires as to some merchandise or service. A seller may respond with a quote.
A buyer may order some merchandise or service. A seller may confirm an order. A seller
may deliver an order. A buyer may accept a delivery. A seller may send an invoice. A
buyer may pay according to the invoice. A buyer may return, within warranty period, a
delivery. And a seller may refund such a return.

We have, deliberately, used the “hedge” ‘may’:

A trader may choose an action of no response, or a trader may inform that a transaction
was misdirected, or a trader may decline to quote, order, confirm, deliver, accept,
pay or refund !

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 21

3.3.4 Formalisation of Syntax

type
Trans == Inq | Ord | Acc | Pay | Rej
Qou | Con | Del | Acc | Inv | Ref
NoR | Dec | Mis

The first two lines list the ‘buyer’, respectively the ‘seller’ initiated transaction types. The
third line lists common transaction types.

U below stand for unique identifications, including time stamps (T), Sui for surrogate
information, and MQP alludes to merchandise identification, quantity, price. 94

U, T, Sul, Su2, MQP

Inq =MQP x U

Qou = (Inq|Sul) x Inf x U
Ord = Qou|Su2 x U

Con=0rd x U
Del =0rd x U
Acc =Del x U
Inv =Del x U
Pay = Inv x U
Rej = Del x U
Ref = Pay x U

NoR = Trans x U

Dec = Trans x U

Mis = Trans x U
value

obs T:U—> T

In general we model, in the domain, a “subsequent” transaction by referring to a complete

trace of unique, time stamped transactions. Thus, in general, a transaction “embodies” the

transaction it is a manifest response to, and time of response. 95
Figure 4 attempts to illustrate possible transaction transitions between buyers and sellers.

TRADER TRADER TRADER
—_—

SELLER

2

2

;f

Pk

|

A

g
g

Dalbwery. Sarry)
< ‘J&_—t’ t t
== = | |8
':J\ .:F“' S— : mmr Tramacies, Ond ooy o e Ofer | h
Figure 4: Buyer / Seller Protocol Figure 5: Trader=Buyer+Seller

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:98

22 SEA Seminar, Tokyo: — Informatics of Infrastructures

3.3.5 “The Market”

Figure 5 attempts to show that a trader can be both a buyer and a seller. Thus traders
“alternate” between buying and selling, that is: Between performing ‘buy’ and performing
‘sell’ transactions.

Figure 6 attempts to show “an arbitrary” constellation of buyer and seller traders. It
highlights three supply chains. Each chain, in this example, consists, in this example, of a
“consumer”, a retailer, a wholesaler, and a producer.

...... - D e S

Gasidieass s las 1
] H
'
E D
F H

(Example Supply Chains: ABCG, HDBF, BGAE, ...)

Figure 6: A Network of Traders and Supply Chains

3.3.6 Formalisation of Process Protocols

“The Market” consist of n traders, whether buyers, or sellers, or both; whether additionally
agents or brokers. Each trader 7; is able, potentially to communicate with any other trader
{m,...,Ti1,Tit1,-- ., Ta}. We omit treatment of how traders come to know of one another.
We focus only on the internal and external non—determinism which is always there, in the
domain, when transactions are selected, sent and received.

Our model is in a variant of CSP, but expressed “within” RSL [5].

type
0
Idx = {| 1.n |}
value
sys: (Idx # ©) x n:Nat — Unit
sys(mé,n) = || { tra(i)(mé(i)) | i:Idx }

tra: i:ldx - © —
in {tc[j,i]|j:Idx+#j} out {tc[i,j]|j:Idx+i#j} Unit
tra(i)(6) = tra(i)(nxt(i)(8))

nxt: i:ldx - © —
in {tc[j,i1]|j:Idx+#;} out {tc[i,j]|j:Idx-i#£j} ©
nxt(i)(0) =
let choice = rcv [] snd in
cases choice of
rcv—receive(i)(8), snd—send(i)(6)
end end

© Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 23

Annotations: The system is the parallel combination of n traders. Traders communi-
cate over channels: tc[i,jj — from trader i to trader j. Each trader is modelled as a process
which “goes on forever”, but in steps of next state transitions. The next state transition
non—deterministically (internal choice, [|) “alternates” between expressing willingness to re-
ceive, respectively desire to send. In “real life”, ie. in the domain, the choice as to which
transactions are taken is non—deterministic. And it is an internal choice. That is: The choice
is not influenced by the environment.

Formalisation:

receive: i:ldx — © — in {tc[j,i]|j:Idx-i#j} ©
receive(i)(0) =
[] {let msg=tc[j,i]? in
update_rcv_state(msg,j)(8) end|j:Idx}

update_rcv_state: i:Idx x ©® — ©

Annotations: 3 update_rcv_state is not a protocol function. update_rcv_state (not shown)
describes the deposit of msg in a repository of received messages. If msg is a response to an
earlier sent transaction, msg_o, then update_rcv_state describes the removal of msg_o from
a repository of sent messages. remove_sent_msg (not shown) models the situation where no
response (nor) is (ever) made to an earlier sent message. Once the internal non—deterministic
choice ([]) has been made: Whether to receive or send, the choice as to whom to ‘receive
from’ is also non-deterministic, but now external ([]). That is: receive expresses willingness
to receive from any other trader. But just one. As long as no other trader j does not send
anything to trader i that trader i just “sits” there, “waiting” — potentially forever. This
is indeed a model of the real world, the domain. A subsequent requirement may therefore,
naturally, be to provide some form of time out. A re-specification of receive with time out is
a correct implementation of the above.

send: i:ldx - © — in {tc[i,j]|j:Idx+i#j} ©
send(i)(8) = '
let choice = ini [| res [| nor in
cases choice of
ini — send_initial(i)(8),
res — send_response(i)(8),
nor — remove received msg(f) end end

Either a trader, when communicating a transaction, chooses an initial (ini) one, or chooses
one which is in response (res) to a message received earlier, or chooses to not respond (nor)
to such an earlier message The choice is again non—deterministic internal. In the last case
the state is updated by non-deterministically internal choice (not shown) removing the, or
an earlier received message.

13Please note that we are not always RSL “conformant”: The receive signature deploys a non-standard
‘dependent’ type usage: The leftmost 7 binds the following is.

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

7:100

7:101

7:102

7:103

24 SEA Seminar, Tokyo: — Informatics of Infrastructures

Note that the above functions describe the internal as well as the external non-determinism
of protocols. We omit the detailed description of those functions which can be claimed to
not be proper protocol description functions — but are functions which describe more the

04 particular domain at hand: Here “The Market”.

send_initial: i:Idx — © — out {tc[i,j]|j:Idx-i#j} ©
send _initial(i)(6) =
let choice = buy [| sell in
cases choice of
buy — send_init_buy(i)(8),
sell — send_init_sell(i)(#) end end

send_response: i:ldx - © — out {tc[i,j]|j:Idx-i#j} ©
send_response(i)(0) =
let choice = buy [] sell in
cases choice of
buy — send_res_buy(i)(6),
sell — send_res_sell(i)(f) end end

In the above functions we have, perhaps arbitrarily chosen, to distinguish between buy and
sell transactions. Both send_initial and send_response functions — as well as the four auxiliary
105 functions they invoke — describe aspects of the protocol.

send_init_buy: i:Idx - © — out {tc[i,j]|j:Idx-#j} ©
send_init_buy(i)(0) =
let choice = inq [| ord [] pay [] ret [] ... in
let (j,msg,0") = prepare_init_buy(choice)(i)(#) in
tc[i,j]'msg ; &' end end

send_init_sell: i:Idx — © — out {tc[i,j]|j:Idx-i#j} ©
send_init_sell(i)(8) =
let choice = quo [] con [] del [] inv [] ... in
let (j,msg,0’) = prepare_init_sell(choice)(i)(6) in
te[i,j]'msg ; 6’ end end '

prepare_init_buy is not a protocol function, nor is prepare_init_sell. They both assemble an
initial buy, respectively sell message, msg, a target trader, j, and update a send repository
71106 state component.

send_res_buy: i:Idx - © — out {tc[i,j]|j:Idx-i#j} ©
send_res_buy(i)(6) =
let (6',msg)=sel update_buy_state(8),
j=obs_trader(msg) in
let (8”,msg’) = response_buy_msg(msg)(¢’) in
tc[i,j]'msg’; 8” end end

send_res_sell: i:ldx — © — out {tc[i,j]|j:Idx-i#j} ©

© Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 ' 25

send res sell(i)(8) =
let (6’,msg)=sel_update _sell state(d),
j=obs_trader(msg) in
let (6”,msg’) = response sell_msg(msg)(#’) in
tc[i,j]'msg’; ” end end

sel_update_buy _state is not a protocol function, neither is sel_update_sell state. They both
describe the selection of a previously deposited, buy, respectively a sell message, msg, (from
it) the index, j, of the trader originating that message, and describes the update of a received
messages repository state component. response_sell_ msg and response_buy_msg both effect
the assembly, from msg, of suitable response messages, msg’. As such they are partly protocol
functions. Thus, if msg was an inquiry then msg’ may be either a quote, decline, or a
misdirected transaction message. Etcetera.

3.3.7 Requirements

Projection Synopsis: We focus only on the communication between traders. We basi-
cally ignore the “content” of any transaction, and shall instead focus on automating certain
sequences of transactions.

Instantiation Synopsis: Whereas the domain model of traders was a model, essentially,
intrinsically, of human operations, we now try to automate as much as possible the response
to received transactions. Thus, as an example: (1) If a consumer order can be delivered by
the retailer, without human (retailer staff) intervention, it will be done so. (2) If a consumer
order cannot be delivered by the retailer, but that retailer can re-order from a wholesaler,
who can deliver — both atomic transactions without human (retailer and wholesaler staff)
intervention, it will be done so. (3) And if a consumer order cannot be delivered by the
retailer, but that retailer can re-order from a wholesaler, who then cannot deliver, but must
re—order from producer, who can deliver — all atomic transactions without human (retailer,
wholesaler and producer staff) intervention, it will be done so. Figure 7 attempts to show
the three cases listed above. There might be delays, waiting times, between order receipt and
delivery and/or re—ordering, across the supply—chain.

Consumer Retailer Wholesaler Producer
odew | 3 order . order
order Ny - e order
o1 [o :
‘el c2 [~
cl
.......
S f———Fecssami e ——lanisasas
deliver deliver 3 detiver

Three Supply-chain Cases: (c1) Direct, (c2) via Retailer, (c3) alf the way from Producer

Figure 7: E-Business “Supply” Chain

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

7:107

T:108

7:109

7:110

7:113

T:114

lisboa

7:115

7:112

113

7114
lisboa/wislogi

7:115

26 SEA Seminar, Tokyo: — Informatics of Infrastructures

Extension Synopsis: We introduce electronic traders and brokers. They permit arbitrar-
ily wide inquiries: Potentially to all providers (retailers, wholesalers, or producers) of specified
merchandise (or services), offers (“confirmations”) of merchandise (or services) to all “tak-
ers” (consumers, retailers, or wholesalers), first—-come—first serve (“auction”-like) orders, éc.
These roughly sketched domain requirements are considered extensions as they might not be
humanly feasible in actual domains.

Initialisation Synopsis: Due to our projection we need only consider how traders, agents
and brokers initially, and in an ongoing way, come to know of one another. We omit details
— “left as an exercise”.

3.3.8 Discussion

There is an urgent need to bring semantics to bear on electronic transactions, to study the
spectrum of G, B, and C inter— and intra—transactions, and to apply modal logics and speech
act theories to automated families of autonomous agents and brokers. We believe that we
first need establishing models like the above in order go on with these urgent studies.

3.4 Logistics

The ability to transport freight from well-nigh any spot on the globe to well-nigh any other
spot on the same globe is a test of “infra—structure-hood”.

The term ‘logistics’ is here taken to cover an ability of managing the interfaces between:
clients who send and receive freight items with logistics firms who organise the transport and
deal with transport companies who offer transportation by means of conveyors with whom
they also interface; and with hubs where various kinds of conveyor types congregate. We first
narrate some facets of logistics, then suggest a formal model.

3.4.1 Informal View

Freight Transport: Freight transport, as abstractly designated by Figure 8, may evolve by
means of various conveyors: from truck (A—B) to train (B—C) to ship (C—F) to train (F—G)
and finally by truck (G—H). Intermediate transfer places are called hubs: Truck terminals,
railway stations, harbours and airports.

= a o '
\G? Q— e C3| © \‘\\ [E(
.) /
\ - y - =
@\06(9
Figure 8: A Freight Transport Figure 9: Part of a Logistics Net

A bill-of-lading (BoL, see Figure 10) describes the composition of individual transports (ab,
be, cf, fg, and gh).

© Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

T:111

7:116

A Future for Computing Science — Monday June 17th, 2002 27

Logistics Nets: Many routes composed from different kinds of conveyors between hubs are
normally possible. Figure 9 indicates alternative routing between hubs (here B and G).

A Freight Transport Trace: To manage freight transports logistics firms need be able
to trace the whereabouts of freights. Figure 10 indicates (by bullets) “interesting” points:
When freight enters first hub (once), when it leaves a hub on a conveyor (five times), when it
is on a conveyor (five times), when it enters a hub from a conveyor (five times), and when it
finally leaves a hub for a receiver (once).

Time t

Figure 10: The Trace of a Specific Trans- Figure 11: A State of a Logistics Net
port

The Dynamic State of A Logistics Net: At any one time many items of freight are being
transported on a diversity of conveyors between many (pairs of) hubs. Figure 11 indicates,
for an arbitrary point in time, ¢, such a state of freights (the bullets) and conveyors (the
vertically oriented rounded “boxes” “containing” zero, one or two es.

We now model a logistics system consisting of clients (senders and receivers of freights),
logistics firms (which arrange transport for clients), transport companies which own conveyors,
and hub (enterprises). We model each of these (clients, firms, companies, conveyors and hubs)
as processes.

Clients: Clients (potential senders) inquire with Logistics Firms for virtual BoLs — these
are like quotes — and receives possibly several such in return. Clients (senders) deliver
(typically with a virtual BoL as reference) to Logistics Firms actual Cargo and receives Copies
of a relevant, unique BoL. Clients (senders and/or receivers) inquire as to the whereabouts (a
trace) of some cargo based on a/the Copy of its BoL and receives trace information. Clients
(receivers) receive (“out of the blue”, but most likely expectedly so) information that a Cargo
is to be picked up at the Logistics Firm!*. Clients (receivers) Fetch arrived Cargo.

Logistics Firms: The Logistics Firm to Client interfaces have already been described
above.

Logistics Firms deliver one or more (possibly, or most likely unrelated) Cargo including
their BoLs to Hubs. Logistics Firms receive notification from Hubs that initial Hub and/or
intermediate Hub Cargo has departed on a Conveyor (onto which it has been loaded). Logis-
tics Firms receive notification from Hubs that intermediate Hub and/or final Hub Cargo has

*You may wish to model also or instead the option or alternative that the Logistics Firm delivers the cargo
to Client (receiver)

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:117

T:118

7:119

7:120

T:121

T:122

T:123

T:124

28 SEA Seminar, Tokyo: — Informatics of Infrastructures

arrived — and if final, that it can be fetched. Logistics Firms Fetch finally arrived Cargo.
Logistics Firms request Time and Fee Table Information from Transport Companies and re-
ceives such information. Logistics Firms inquire as to Availability for (Cargo, departure, etc.,
specified) Cargo space and receive temporary confirmation of such (or later, close in time,
etc.) space and conditions, or unavailability of space. Logistics Firms bindingly reserve Cargo
space on designated departures, etc.

Transport Companies: The Transport Company to Logistics Firm interfaces have already
been described above.

The Transport Companies receive information from their Conveyors that (such and such)
Cargo has been unloaded at a Hub. The Transport Companies receive information from
their Conveyors that (such and such) Cargo has been loaded at a Hub. And hence that the
conveyors has been at a hub.

Hubs: The Hub to Logistics Firm interfaces have already been described above.
The Hubs receive, hence unloaded, Cargo, from Conveyors. The Hubs delivers, hence
load, Cargo, to Conveyors.

Conveyors: The Conveyor to Hub interfaces and the Conveyor to Transport Company
interfaces have already been described above.
Hence there is no more to describe concerning external interfaces.

3.4.2 System Formalisation

There seems to be just the following “players” (See Figure 12): Clients, logistics firms, trans-
port companies, hubs, and conveyors, modelled as processes (ie. as behaviours), and “inter-
faces” Clients to/from logistics firms, logistics firms to/from transport companies and to/from
hubs, transport companies to/from conveyors and to/from hubs, and conveyors to/from hubs.

modelled in terms of channel communications.
Figure 12: Process and Channel Graph of a Logistics System

\./

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 29

T:125 7:1
States:

type
Kldx, LIdx, TIdx, HIdx, CIdx
K¥, LY, TY, HE, CZ
KYXM = Kldx = KX, LYM = LIdx » LY
TEM = Tldx TX, HEM = Hldx » HY
CIM =Cldx » CX
value
k¥m:KXM, £Zm:LEM,
tE¥m:TEM, hEm:HEM,
cXm:CEM

System Process:

sys: Unit — Unit

sys() =
I { cli@) (kom(i)) | iKrdx } |
I| { log(i)(fom(i)) | i:Lldx } ||
| { tra(i)(tom(i)) | i Tidx } |
[l { hub(i)(hom(i)) | i:Hldx } ||
|| { con(i)(com(i)) | i:Cldx }

7:126
Transaction Message Types: We do not detail the concrete types of messages.

type
MKL = veey MLK = ceny 1
MLT = ..., MTL =-...,
MLH = .., MHL = ...,

MHC = .., MCH = ...,
MTC = ..., MCT = ...

Channels:

channel

{ cke[k,£] | k:KIdx, £:LIdx } MKL,
{ cfk[£k] | k:KIdx, £:LIdx } MLK,
{ ctf[t,£] | £:L1dx,t:TIdx } MTL,

{ ctt[£t] | £:L1dx, t:TIdx } MLT,

{ chf[h,£] | £:LIdx,h:HIdx } MHL,
{ cth[£,h] | £:L1dx, h:HIdx } MLH,
{ che[h,c] | h:HIdx, c:Cldx } MHC,
{ cch[c,h] | h:HIdx, c:Cldx } MCH,
{ cte[t,c] | t:TIdx, c:Cldx } MTC,
{ cct[c,t] | t:TIdx, c:Cldx } MCT

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

30 SEA Seminar, Tokyo: — Informatics of Infrastructures

3.4.3 Client Formalisation

127

Client Types:

type
BoL
MKL == Inq_BoL | VBoL
| Delivery | CBoL
| Inq_Trace | Trace
| Received | Fetch | Cargo
Inqg_BoL:: VCargo x HIdx x HIdx x Qual-set
Qual == fastest | shortest | cheapest | reliably | safest | ...
VBoL
Delivery :: RCargo x HIDx x HIdx x Qual-set x VBoL
CBoL
Inq_Trace :: CBoL
Trace
Received :: LIdx x CBoL
Fetch :: CBoL
RCargo
VCargo
value
obs_VBoL: BoL — VBoL
obs_CBoL: BoL. —+ CBoL
obs_VCargo: RCargo — VCargo

T:128
Client Auxiliary Functions:

type
Trace
Inq_Pred_Info :: LIdxx VCargox HIdx x HIdx x Qual-set
Dlvr_Pred Info :: LIdxx RCargox HIdxx HIdx x Qual-set x VBoL
Trace_Pred_Info, Fetch_Pred_Info :: LIdxx CBoL
Inq_Upda_Info :: Inq_Pred_Infox VBoL-set
Dlvr_Upda_Info :: Dlvr_Pred_Infox CBoL
Trace_Upda_Info :: Tracex CBoL
Received :: LIdx x CBoL
Cli_Pred_Info = Inq_Pred_Info | Dlvr_Pred_Info
| Trace_Pred_Info | Fetch_Pred_Info
Cli_Upda_Info = Inq_Upda_Info | Dlvr_Upda_Info
| Trace_Upda_Info | Received
value
cli_pred: Cli_Pred Info -+ KX — Bool
cli_upda: Cli_Upda_Info -+ KX — KX

© Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002

:129 .
Client Processes:

value
cli: i:KIdx — K¥ —
in,out { ckf[i,f] | £:LIdx }
in { cfk[£,i] | £:L1dx } Unit
cli(i) (ko) =
let ko' = (inq(i) (ko) [|dlvr(i) (ko) [[trace(i) (ko) [|fetch(i) (ko))
[l revd(i)(ko) in
cli(i)(ko’) end

inq: i:KIdx —+ KX — in,out { ckf[i,/] | £:LIdx } KX
inq(i)(ke) =
let ipi=mk Inq_Pred_Info(¢,vc,f,t,qs):Inq Prd Info
* cli_pred(ipi) (ko) in
ckf[i,£] ! mk Inq_BoL(ve,f,t,qs) ;
let vbols = ckf[i,£] ? in cli_upd(mk_Inq_Upd(ipi,vbols))(ko)
end end

dlvr: i:KIdx - KX — in,out { ckf[i,£] | £:LIdx } KX
dlvr(i) (ko) =
let dpi=(£,rc,f,t,qs,vbol):Dlvr_Pred_Info
* cli_pred(dpi)(ke) in
ckf[i,f] ! mk Delivery(rc,f,t,qs,vbol) ;
let cbol = ckf[i,£] ? in cli_upd(mk_Dlvr_Upd(dpi,cbol)) (ko)
end end

trace: i:KIdx — KX — in,out { ckf[i,f] | £:LIdx } KX
trace(i)(ko) =
if 3 cbol:CBoL - cli_pred(mk_Trace_Pred Info(£,cbol))(ko)
then
let tpi=mk_Trace_Pred _Info(£,cbol):Trace Info
* k_trace_pred(£,cbol) (ko) in
ckf[1,£] ! mk Inq_Trace(cbol) ;
let mk_Trace(trace) = ckf[i,£] ? in
cli_upd(mk_Trace_Upd(trace,cbol)) (ko)
end end
else ko end

revd: i:KIdx — KX — in { cfk[£,i] | £:LIdx } KX
revd(i) (ko) =
let revd = [|[{ cfk[£,i] ? | £:LIdx } in
cli_upd(revd) (ko)
end

fetch: i:KIdx — KX — in,out { ckf[i,£] | £:LIdx } KX

31

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

32 SEA Seminar, Tokyo: — Informatics of Infrastructures

fetch(i) (ko) =
let fpi=mk_Fetch_Pred _Info(£,cbol):Fetch Pred_Info
* cli_pred(fpi) (ko) in
ckf[1,£] ! mk_Fetch(cbol) ;
let rcargo = ck{[i,£] ? in
cli_upd(mk Fetch_Upd(fpi,rcargo)) (ko)
end end

3.4.4 Logistic Firm Formalisation
7:131

Function Types:

value
£_inq_vbols:
VCargoxHIdxx HIdxx Qual-set — LY — VBoL-set
£_inq_upd:
KIdxx VCargox HIdxx HIdxX Qual-set — LY — LX
£_dlvr_cbol:
(RCargox HIdxx HIdx x Qual-set) x VBoL — LY — CBoL
£_dlvr_upd:
(RCargox HIdxx HIdx X Qual-set) x (CBoLxVBoL) — LY — LX
£_trace:
CBoL - LY —» LY
£_trace_upd:
CBoLxTrace - LY — LX
£ fetch: -
CBoL — LY — Cargo
£ _fetch_upd:
CBoLxCargo — LY — LX
£_rcvd:
LY — Received
£ _rcvd _upd:
KIdxxCBoL — LY — LZ

T:132

Logistics Firm Processes:

value
log: £:LIdx — LY —

in,out { ckf[i,¢] | i:KIdx }

out { cfk[£,i] | i:KIdx }

in,out { cfh[i,¢] | i:HIdx }
in,out { chf[£,i] | i:HIdx }
in,out { cft[i,£] | i:TIdx }
in,out { ctf[£,i] | :TIdx } Unit

log(£) (o) =

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 33

let o’ =

clilog(€) (o) [] logcli(£)(£o)

| log_hub(¢)(£s)] log tra(£)(£o) in
log(£)(£0’) end

Client Initiated — Logistics Firm Transactions:

value
clilog: £:LIdx — LY —
in,out { ckf[i,¢] | i:KIdx } out { cfk[£,i]| i:KIdx } Unit
clilog(£)(4o) =
let o’ =
[l {let msg = k£[i,£] ? in
cases msg of

mk Inq_BoL(vc,f,t,qs) —
let vbols = £_inq_vbols(vc,f,t,qs)(£r) in
k£[i,¢]!vbols;
£inq_upd((i,ve,f,t,qs),vbols)(4r) end,

mk Delivery((rc,f,t,qs),vbol) —
let cbol = £_dlvr_cbol((rc,f,t,gs),vbol)(¢r) in
k£[i,£]!cbol;
£_dlvr_upd((rc,f,t,qs),(cbol,vbol)) (¢r) end,

mk Inq_Trace(cbol) —
let trace = £_trace(cbol)(£o) in k£[i,£]'trace;
£_trace_upd(cbol,trace)(£fc) end,

mk Fetch(cbol) —
let cargo = £ fetch(cbol)(£0) in k£[i,£]!cargo;
£ fetch_upd(cbol,cargo)(£0) end

end end | i:Kldx } in
log(£)(£0’) end

Logistics Firm Initiated — Client Transactions:

value
log_cli: £:LIdx — LE — out { cfk[£,i] | i:KIdx } Unit
log_cli(£)(£o) =
if £ rcvd_pred(£o)
then
let (i,cbol) = £rcvd(£o) in
clk[£,i] ! mk Received(£,cbol) ;
log(£)(£rcvd_upd(i,cbol)(£o)) end
else log(¢) (o)
end

7:138

Etcetera. We leave it — as an exerise — to the reader to decipher the formulas.

14th of May 2002, 12:16 © Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:136
lisboa/hecs

137

7138

34 SEA Seminar, Tokyo: — Informatics of Infrastructures

3.4.5 Discussion

The two previous examples: electronic—business, and freight transport logistics, share many
properties. Besides similar forms of transactions, apparent need for modalities and speech
act concepts, distribution and concurrency, éc., they both model the transaction—oriented
flow of material, information, and control. The next example emphasises the additional flow
of people.

3.5 Health—care

The health—care sector “features” many stake—holders:

D: Drug store, pharmacy
I: Insurance (health)
C: Citizen
M: Medical doctor
G: Government
incl. Regulatory authority
N: Nurse (community)
H: Hospital
K: Clinic or clinical test laboratory

One or more
instantiations

<----> Communication

A healthcare process graph

Figure 13: Stake-holders of the Healthcare Sector

Figure 13 designates drug stores health insurance — citizens medical doctors — national
board of health ministry of health — community nurses pharmaceutical industry hospitals —
clinics and their pairwise interactions.

Without much further ado, we embark on a formalisation.

3.5.1 The System States and Process

type
KX, MY, PX, HY, ..
KIdx, Mldx, PIdx, Hldx, ...
© = (Kldx » KX) x (MIdx » MX)
X (Pldx s PX) x (HIdx » HX)

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

T:135

A Future for Computing Science — Monday June 17th, 2002

X s
value

(ike,imoipoihe,...):0

sys: ® — Unit

sys(ike,imo,ipoihe,..) =
	{ client(i)(iko(i))	i:KIdx }	
	{ doctor(i)(ime(i))	i:MIdx }	
{ pharmacy(i) ipo(i))	i-Pldx }		
	{ hospital(i)(ihe(i))	i:HIdx }	

3.5.2 The Channels

type
CKM, CKP, CKH, CMP, CMH, ... -
channel
{ ckm[k,m] | k:KIdx,m:MIdx } CKM
{ ckp[k,p] | k:KIdx,p:PIdx } CKP
{ ckh[k,h] | k:Kldx,h:HIdx } CKH
{ cmp[m,p] | m:MIdx,p:PIdx } CMP
{ cmh[m,h] | m:MIdx,h:HIdx } CMH

3.5.3 Client & Medical Doctor

value
client: k:KIdx —+ KX —
in,out { ckm[k,m] | m:MIdx }
in,out { ckp[k,p] | p:PIdx }
in,out { ckh[k,h] | h:HIdx } Unit
client(k) (ko) =

type
KChoice == meddoc | pharma | ...
value
client(c)(ko) =
[1] let choice = meddoc [| pharma [] ... in
[2] let ko’ =
[3] cases choice of
(4] meddoc —
(5] let d = select_meddoc(keo) in
(6] ckm([c,d]'ko ;
[7] ckm[c,d]? end,
[8] pharma —
[9] let p = select_pharma(ko) in

35

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

7:139

T:140

71

71

T:141

T:142

T:143

T:144

36 SEA Seminar, Tokyo: — Informatics of Infrastructures

[10] ckm[c,p]ko;
[11] ckp[c,p]? end,

end in
[12] client(c)(ko’) end end

(1) A client chooses either to go to the doctor, or to the pharmacy, or ... (4) If the client
decides to go to the doctor, (5) a selection of which doctor has to be made, (6) and the client
goes to that doctor, (7) and returns from that doctor (2) in a new state. (8) If the client
decides to go to the pharmacy, (9) a selection of which pharmacy has to be made, (10) and
the client goes to that pharmacy, (11) and returns from that pharmacy, (2) in a new state.
Etcetera. (12) The client continues in that new state.

type

MChoice == citizn | pharma | ...
value

doctor(d)(deo) =
[1] let choice = citizn | pharma | ... in
(2] let do’ =
[3] cases choice of
[4] citizn —
[5] || { let ke = ckm[c,d]? in
(6] let (ko’,do’)=handle_c(ko,do) in
(7] ckm[c,d]'ko’ ;
(8] do’ end end | c:Cldx }
(o] Ndo,
[10] pharma —
[11] || { let po = ckm[d,p]? in
[12] let (po’,do’)=handle_p(po,do) in
[13] ckm([d,p]'po’;
[14] do’ end end | p:PIdx }
[15]] do,

end in

[16] doctor(d)(de’) end end

(1) The medical doctor choose whether to respond to a visit from a client, or a call from
the pharmacy, or ... (3,4) In case of declaring willingness to receive a client, (5-8) some client
is handled, (9) or no client is handled — say for the case of no clients in the waiting room !
(5) A client is received, (6) treated, (7) sent away, (8) and the medical doctor prepares for
next action (2) in a new state. (3,10) In case of declaring willingness to recéivecall from a
pharmacy, (11-14) some pharmacy call is handled, (15) or no pharmacy call is handled — say
for the case of no such calls ! (11) A pharmacy call is accepted, (12) handled, (13) terminated,
(14) and the medical doctor prepares for next action (2) in a new state. (16) The medical
doctor continues in that new state.

© Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

T:145

A Future for Computing Science — Monday June 17th, 2002 37

3.5.4 Remaining Interactions

Similar analysis and description must be carried out for the full spectrum of the health—care
sector stake—holder intra— and inter—actions:

e Client +» Pharmacy

e Client +» Hospital

e Medical Doctor +» Pbarrﬁacy
e Medical Doctor +» Hospital
e 8c. .

We have just intimated what is to be done !

3.5.5 Discussion
T:146

The model is cursory. It does, however, model indeterminicay: Impatient clients returning z
from a medical doctor’s waiting room withiut being treated. Irrational medical doctors never
choosing to listen to pharmacy calls. Etcetera.

3.6 Transaction Scripts

T:147

3.6.1 The Problem lisbos/wistran

We have seen in the three previous examples how tasks were carried out by a distributed

set of operations either on freight (as for the logistics example), or on potential or real

merchandise (as for the electronic business example), or on people — in the form of patients.

The distributed set of operations were somehow effected by there being an actual or a virtual

(a tacitly understood) protocol. We will now examine this notion of “protocol” further. 48
There are two issues at stake: To find a common abstraction, a general concept, by means

of which we can (perhaps better) understand an essence of what goes on in each of the

previously illustrated examples; and thus to provide a “common denominator” for a concept

of work flow systems, a concept claimed to be a necessary (but not sufficient) component

of “being an infrastructure”.!® We could now proceed to a slightly extended discussion & s

analysis of various issues that are exemplified by the previous three examples; but we omit

such a discussion & analysis here — leaving it to a more vivid “class-room” interaction to

do so. Instead we delve right into one outcome of, ie. one solution, this discussion & analysis,

respectively search for a common abstraction, a general concept.

3.6.2 Clients, Work Stations, Scripts and Directives

There are clients and there are work stations. Clients initialise and interpret scripts. A script
is a set of time-interval stamped collection of directives. Interpretation of a script may lead
a client to visit (ie. to go to) a work station. A client can at most visit one work station at a

71

% Railway systems, as are indeed all forms of transportation systems, are thought of as being infrastructure

‘components, yet, in our past models of railway systems the work flow nature was somewhat hidden, somewhat

less. obvious.

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

7:151

7:152

T:153

T:154

38 SEA Seminar, Tokyo: — Informatics of Infrastructures

time. Thus clients are either idle, or on their way to or from a work station: Between being
idle or visiting a previous work station. At a work station a client is being handled by the
work station. Thus work stations handle clients, one at a time. That is, a client and a work
station enter into a ‘rendez vous”, ie. some form of co—operation. Client/work station co-
—operation exhibits the following possible behaviours: A directive is fetched (thus removed)
from the script. It is then being interpreted by the client and work station in unison. A
directive may either be one which prescribes one, or another, of a small set of operations to
take place — with the possible effect that, at operation completion, one or more directives
have been added to the client script; or a directive prescribes that the client goes on to visit
another work station; or a directive prescribes that the client be released. Release of a client
sets the client free to leave the work station. Having left a work station as the result of a
release directive “puts” the client in the idle state. In the idle state a client is free either
to fetch only go to work station directives, or to add a go to work station w directive to its
script, or to remain idle.

3.6.3 A Simple Model of Scripts

Formalisation of Syntax:

type
T, A
axiom
Vi,thT,38A «t'>t = 8 = t'—t
type
C, Cn, W, Wn
§'= (T x T) w D-set
S = {| s:8" » wfS(s) |}
D == g(w:Wn) | p(w:W f:F) | release
F'=(CxW)—> (WxC)
F = {| f:F « wf_F(f) |}
value
obs_Cn: C — Cn
obsS: C— S
obs_ Wn: W — Wn
wfS: S — Bool
wfS(s) =V (t,t):(TxT) ¢ (t,t')€ dom s « t<t’
wf F: F — Bool
wf F(c,w) as (c,w')
post obs_Cn(c)=obs_Cn(c’) A obs_-Wn(w)=obs_Wn(w')

Annotations I: There are notions of (absolute) time (T) and time intervals (A). And there
are notions of named (Cn, Wn) clients (C) and work stations (W). Clients possess scripts,
one each. A script associates to (positively directed) intervals over (absolute) times zero, one
or more directives. A directive is either a go to, or a perform, or a release directive. Perform
directives specify a function to be performed on a pair of clients and work stations, leaving
these in a new state, however constrained by not changing their names.

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 39

3.6.4 A Simple Model of Work Flow

7:155

Formalisation of Semantics — The Work Flow System:

type
Cn, Wn
Cx, WX
CQ2=Cn » CX
WQ =Wn » WX
value
obsS: CX —» S

remove: (TxT) x D +S — S
add: (TxT) x D —+S — S
merge: S X CX — CX

obs CX¥: C - CX

obs WX: W —» WX

cw:CQ, ww:WQ, to:T, 4:A

sys: Unit — Unit
sys() =
|| { client(cn)(to)(cw(cn)) | cn:Cn } ||
|| { work station(wn)(to)(ww(wn)) | wn:Wn }

Annotations II: Clients and work stations have (ie. possess) states. From a client state one
can observe its script. From a script one can remove or add a time interval stamped directive.
From the previous notions of clients and work stations one can observe their states.!® cw, ww
to, and & represent initial values of respective types — needed when intialising the system
of behaviours. A work flow system is now the parallel combination of a number (# Cn) of
clients and a number (# Wn) of work stations, the latter all occurring concurrently.

T:157

Formalisation of Semantics — Clients:

channel
{ cw[cn,wn] | cn:Cn, wn:Wn } M

value
client: cn:Cn -+ T —» CX —
in,out { cw[cn,wn] | wn:Wn } Unit
client(cn)(t)(co) =
c_idle(cn)(t)(co) [] c_step(cn)(t)(co)

cidle: Cn -+ T — CX — Unit
c_idle(cn)(t)(co) =

'$The two notions may eventually, in requirements be the same. In the domain it may be useful to make a
distinction.

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

14th of May 2002, 12:16

T:158

T:159

7:160

T:161

40 SEA Seminar, Tokyo: — Informatics of Infrastructures

let t:T+t'>t in client(cn)(t')(co) end

cstep: cn:Cn - T —» CX —
in,out { cw[cn,wn] | wn:Wn } Unit

Annotations III: Any client can, in principle, visit any work station. Channels model
this ability. A client is either idle or potentially visiting a work station (making one or more
transaction steps). The client makes the (ie. a non—deterministic internal) choice, whether idle
or potential action steps. To “perform” an idle “action” is to non-deterministically advance
the clock.

Formalisation of Semantics — Clients Continued:

c_step(cn)(t)(co) =
let s = obs_S(co) in
if 3 (t',t"):(TxT),g(wn):D « (t',t") € doms A
t'<t<t” A g(wn) € s(t',t")
then
let (t',t"):(TxT),g(wn):D+ (t't") € dom s A
t'<t<t” A g(w) € s(t',t") in
let co’ = remove((t't"),g(wn))(co) in
let (t",co”) = c2ws_visit(t',t")(cn,wn)(t)(co’) in
client(cn)(t")(co”) end end end
else
let t":T «t" =t + 4 in
client(cn)(t"”)(co) end
end end

c2ws_visit: (TXTxcn:Cnxwn:Wn) - T — CX —
in,out { cw[cn,wn'] | wn""Wn } (T x CX)
c2ws_visit(t',t")(cn,wn)(t)(co) =
cw[cn,wn] ! ((t',t"),cn,t,co) ;
[{ cw[en,wn'] ? | wn':Wn }

Annotations IV: From a client state we observe the script. If there is a time interval
recorded in the script for which there is a goto directive then such a time interval and goto
directive is chosen: removed from the script, and then a visit is made, by the client to the
designated work station, with this visit resulting in a new client state — at some “later” time.
Otherwise no such visit can be made, but the clock is advanced. A work station visit starts
with a rendez—vous initiated by the client, and ends with a rendez—vous initiated by the work
station.

Formalisation of Semantics — Work Stations:

work station: wn:Wn — WX —

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 41

in,out { cw[cn,wn] | cn:Cn } Unit
work station(wn)(wo) =
let ((t't"),en,t” co) = [[{cw[cn,wn]?|cn:Cn} in
let (t",(so’,wo’)) = wstep((t',t"),cn,t”,(co,wo)) in
cw[cn,wn !(t"" s0”) ;
work _station(wn)(wo’) end end

w.step: (TXT) - wn:Wn — (CEXWX) —
in,out { cw[cn,wn] | cn:Cn } Unit
w_step((t',t"),(cn,wn),t",(co,wo)) =
let s = obs_S(co) in
if s={} then (t",(co,wo))
else assert: (t't"”) € doms
let d:D « s € s(t',t") in
cases d of
p(wn,f) —
let (t"" (so’,wa’)) = act(ft"",(so’,wo’)) in
let so” = remove((t',t"),p(wn,f))(s¢’) in
w_step((t’,t"),(cn,wn) t"” (sc”,wo’)) end end
release —
let so’ = remove((t,t"),p(wn,f))(so) in
(t",(co’,wa)) end,
_ = (t"(co,wa))
end end end end

Annotations V: Each work station is willing to engage in co—operation with any client.
Once such a client has been identified (cn, co), a work station step can be made. If the
client script is empty no step action can be performed. A work station step action is either
a function performing action, or a release action. Both lead to the removal of the causing
directive. Script go to directives are ignored (by work station steps). They can be dispensed
by client steps. Function performing actions may lead to further work station steps.

3.6.5 Discussion

We have sketched a semi—abstract notion of transaction flow. A syntactic notion of directives
and scripts have been defined. And the behavioural semantics of scripts as interpreted by
clients and work stations. We emphasize that the model given so far is one of the domain.
This is reflected in the many non—deterministic choices expressed in the model, and hence
in the seemingly “erratic”, unsystematic and not necessarily “exhaustive” behaviours made
possible by the model. We shall comment on a number of these. See the client behaviour:
Whether or not a client is step is possible, the client may choose to remain idle. See the client
idle behaviour: The client may choose to remain idle for any time interval, that is “across”
time points at which the script may contain directives “timed” for action. Now we turn to
the client step behaviour. The purpose of the client step behaviour is to lead up to a client
to (2) work station visit: Several ‘goto work station’ directives may be prescribed to occur
sometime during a time interval “surrounding” the “current” time t of the client: t'<t<t".

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:162

T:163

T:165

7:166

T:167

T:168

T:169

T:170
lisboa/wiedis

7:171

42 SEA Seminar, Tokyo: — Informatics of Infrastructures

Which one is chosen is not specified. In fact, one could argue that we are over—specifying the
domain. A client may choose to go to a work station ahead of time: t<t'<t”. or late: t'<t"<t.
We leave such a domain “relaxation” as an exercises to the reader. If there are no selectable
‘goto work station’ directive, time (t) is stepped up by a fixed amount, but, again, one could
choose any positive increment, but that would make no difference as it would just “reduce”
(correspond) to the client idle behaviour. The client to (2) work station visit (c2ws_visit)
behaviour models the interface between clients and work stations as seen from the client side.
That “same” interface as seen from the side of work stations is modelled by the two formula
lines surrounding the formula line in which the ‘work station step’ behaviour is invocated. We
now turn to work station step behaviour. This is the behaviour “where things get done !”.
The behaviours described above effected the flow. Now we describe the work. And the work
is done by performing functions. Here it should be recalled that when a client interacts with
a work station both their states are “present”. This is amply illustrated in the work station
step behaviour. The functions to be performed apply to both client and work station states,
and may affect both.

If the script is empty nothing more can be done — so we are finished. If the script is not
empty then we can assert that the work station step time interval argument is one for which
an entry can be, and is, selected from the script — non—deterministically. That entry can
(thus) be either of several: It can be a perform directive aimed at the present work station —
in which case the designated function is acted upon, the directive is removed from the script,
and another step is encouraged. It can be a release directive — in which case the client is
released, becoming an unengaged client again after the release directive has been removed. Or
it can be any other directive (other perform directives, aimed at other work stations, or go to
directives) — in which case the client is likewise “released”, but the directive is not removed.
Observe the looseness of description. Besides including all the possibly desirable behaviours,
the full model above also allows for such behaviours as could be described as being sloppy,
delinquent, or even outright criminal. This concludes our sketch model of transaction scripts
and their intended work flow.

3.7 Discussion — So Far !

Interpretation as Health—care System: The Transaction Script Work Flow example
can be interpreted, amongst many alternatives, as an abstract health—care system. Clients
are potential patients. Scripts are their plans for visits to family physician, pharmacy, clinical
test laboratory and hospital. And these latter are seen as work stations. Of course the work
stations themselves have scripts. Etcetera !

General Comments: The electronic business requirements, as illustrated by Figure 7, can
be handled by agent clients and appropriate directives: The buyer initialises the agent to
‘go to retailer’ and simple ‘retail order’ directives. The latter is either fulfilled by the retailer
(hence the agent is released and returns to buyer with goods), or replaced by ‘go to wholesale
seller’, ‘wholesale order’ and ‘go to retailer’ directives, with the ‘wholesale order directive’
either being fulfilled by the wholesale seller (hence releases the agent to return to retailer),
or, etcetera !

Similar scripts can be associated with logistics ‘bill-of-ladings’, etc.

In connection with appropriate simple speech act primitives the script and transaction
notion can be made rather sophisticated !

© Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 43

4 Type/Value “Systems”

4.1 Intuition

To motivate our treatment of types and values we first exemplify documents of infrastructure
components. Then we look at some generic issues of such documents.

4.1.1 The Problem

Infrastructure component systems have certain characteristic features. One of them is the
kind of information and/or documents that “flavour” the component. Below we hint at some
examples.

4.1.2 Patient Medical Records

A patient medical record is a typical (a core) document of health—care systems. The base part
of a patient medical record contains administrative information. Descriptive parts contains
doctor’s notes (annamnese, measurements, diagnostics, etc.). Goal parts set out plans for
treatment.

type
Base, Pn, Desc, Goal
PMR = Base x (Pn x Prob)
Prob = Desc x Goal x SubP x OldP
SubP = Pn + Prob
OIdP = Prob

As treatment goes on original problem may change: It may be replaced by an altogether new
formulation. Or it may be decomposed into separately treatable sub—problems. Or both.
Patient medical records need be studied using computing science principles and techniques.

4.1.3 Bill-of-Lading

Bills—of-lading seem the core document of logistics.

A bill-of-lading consists of administrative information, base information (weight, physical
measures, value, etc.), a hub of origin, and a list of next hubs with “in-between” conveyor
departure and arrival times and conveyor index.

type
BoL = Admin x BasexHIdxx (T xCIdxx T x HIdx)*

4.1.4 Product Catalogue

Product price or service fee catalogues seem the core documents of electronic business.

To product (or service category) names correspond administrative information, a price/fee
table, and delivery conditions (including times). A price/fee table may designate quantity
rebates.

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:172
lisboa/infointr

T:173

T:174

7:175

7:176

T:177

T:178

lisboa/infodocs

T:179

T:180

44 SEA Seminar, Tokyo: — Informatics of Infrastructures

type
CTLG = Pn #» Adminx(Q s Itm _price)xDel

4.1.5 Discussion

We have — ever so briefly — hinted at some infrastructure component document types. We
next look at two facets of such documents: Their being originals and copies, etc. And their
being displayed, in the domain or by computer.

4.2 Documents: Originals, Copies, Editions and Physics

Another set of facets of document creation and flow handling are those of copies versus
originals, copies of copies, a veritable hierarchy of documents, and their versions.

4.2.1 Originals, Masters and Copies

Narrative: Let there be a notion of an original (document). And let there be a notion of
copying a document, from a master, whether original or already a copy. Let there be the
notions of global time and locations. Originals are created from information at a time and at
a location. Copies are made from (master) documents at a time and at a location.

Formalisation:
type
IL T, L
'==0|0C

O == mkOrig(r:T,£L,i:I)
C == mkCopy(7:T,£L,d:D)
D = {| d:D' « wiD(d) |}
value
wfD: D’ - Bool
wiD(d) =
cases d of '
mkCopy(d) — 7(d) > 7(d’), _ — true end

Comments: The above model represents, perhaps more a requirements model than a do-
main model. This is so since the model describes the property that from any document one
can uniquely observe whether it is an original or a copy, and, if a copy, one can observe the
time and place of the copying and the document from which it was copied is “kept intact” !
Nothing is lost.

value
>: T x T — Bool
create: TX L xI— O
copy: TxLxD—C
axiom

© Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 45

Y t,t"T o
t>t' A ~(t=t'Vt'>t)
t'>t A ~(t=t'Vi>t)
t=t’ A ~(t>t'Vt'>t)

Axioms: In general we can express the following properties that are not directly modelled,
but can be described through axioms: No two documents can be made: Created or copied,
at the same time and (conjunction) location. If two documents are copied from the same (ie.
third) document then they are copied at either different locations at the same time, or at the
same location at different times, or at different locations and different times.

VddiD -
d#d =
~(7(d) =7(d’) A £(d)=¢(d"))
A ((r(d)=7(d) A £(d)#£(d"))
V (r(d)#r(d)) A £(d)=£(d"))
V (r(d)#r(d) A £(d)#£(d)))

4.2.2 Editions

Documents, once created or once copied, can be subject to editing. What may appear to
be physically one document may be subject to series of repeated edits and/or the basis for
repeated copying.

type
A=0|C|E
C' == mkCopy(7:T,£L,§:A)
C = {| «:C' » wfA(c) |}
E' == mkEdit(i:I,m:T,£L,5:A)
E = {| e:E « wfA(e) |}

value
wfA: (C'|E") —» Bool
wfA (mkCopy(t,_,0)) = t>7(4)
wfA(mkEdit(i,t,_,d)) = t>7(4)
edit: IXTXLXA—SE
edit(i,t,1,6) = mkEdit(i,t,1,6) pre t>7(8)

The story on copying etcetera should now be modified.

4.2.3 The Physics of Documents

Narrative: No two documents can occupy the same physical, including electronic, ie. spatial
location. This goes for originals, copies and editions. The spatial location of a document may
change, dynamically. To locate a document is to observe that it is indeed in some spatial
location. We could decide to make the spatial location a property of the observer, the one

14th of May 2002, 12:16 © Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

7:181

T:182

T:183

T:184

T:185

T:186

46 SEA Seminar, Tokyo: — Informatics of Infrastructures

who“finds”, who locates a document, and not of that document. Or we could decide, vice-
—versa, that with every document there is an inert dynamic property, namely its spatial
location. If we choose the latter we become involved in the following modelling:

Formalisation of Document Locatability:

type
DOC, L
value
obs L: DOC — L
obs D: DOC — D
copy: T x DOC — DOC
next_to: L x L — Bool
axiom
V t:T,doc:DOC -
let doc’ = copy(t,doc) in
£(obs D(doc)) = obs_L(doc’) A
next_to(obs_L(doc),obs_L(doc’)) end

The axiom expresses that at the time a document is copied the copy location (£(obs_D(doc")))
is that of the new document location (obs_L(doc’)), and the location of the master and its
copy are located next_to one another. The mereology of ‘next_to’ is an interesting one to
study !

Monotonicity: Time progresses, it is assumed “smoothly”, hence observable document
locations, if they change, change accordingly. Thus a monotonicity axiom is required. Let
us assume that from a document we can also observe the global time, and project it, at any
time, onto its base document (one that is “stripped” of global time and spatial location):

value
obs T: DOC —» T
projD: DOC - T —- D
axiom
V doc:DOC, t,t":T »
let (d,d") = (projD(doc)(t),proj D(doc)(t"))
in version(d,d") end

4.2.4 Discussion

The models above, of temporal properties of documents, is problematic — and should prob-
ably be tackled rather more profoundly. Probably we ought instead introduce a notion of
time—varying function over documents:

type
Doc, T
DOCS = T — Doc

© Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 47

value
obs_L: Doc — L

etcetera.
In general we need, however, resort to more seriously worked out ontologies of time and
mereologies of parts and wholes. But this takes us too far in this paper.

4.3 GUIs: Graphic User Interfaces and Databases

T:187
We have seen them: Nicely formatted GUIs: Graphic User Interface (computer screen) “win- fisbos/infogui

dows”, with “clickable” icons, scroll-down curtains, sub—windows, and tables with rows and
columns and all of these being either “on” or “off” (ie. “clicked” or “not clicked”), with
explanatory texts, and with possibly associated values that the user can “fill in”. We now
present a formal model of a “rich” class of GUIs.

4.3.1 GUlIs: Graphic User Interfaces

The GUI Display: All icons, curtains, sub-windows and tables have names:

type
GUI = Txt X Icns x Crts x Wins X Tbls
Icns = In # Icon
Crts = Cn Curt
Wins = Wn » Wind
Tbls = Tn 7 Tabl
Icon = OnOff x Txt x VAL
Curt = OnOff x Txt x Disp*
Wind = OnOff x Txt x GUI
Tabl = OnOff x Txt x REL
Disp == mkI(i:Icon) | mkC(c:Curt)
| mkW(w:Wind) | mkT(t:Tabl)
REL = TPL-set
TPL = An » VAL
OnOff == off | on

Curtain entry “values” may be GUI windows themselves.

T:189
GUI Types & Values: For end-users to design own GUIs tools are provided, tools which
imply a GUI type concept:

type
GTyp = IenTyps x CrtTyps x WinTyps x TblTyps
IcnTyps = In IenTyp
CrtTyps = Cn #» CrtTyp
WinTyps = Wn » WinTyp
TblTyps = Tn = TblTyp
IenTyp = Typ

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

7:190

7:191

T:192

7:193
lisboa/infodis

48 SEA Seminar, Tokyo: — Informatics of Infrastructures

CrtTyp = DTyp*
WinTyp = Gtyp
TblTyp = RelTyp
DTyp == mkITyp(it:IcnTyp)|mkCTyp(ct:CrtTyp)
| mkWTyp(wt:WinTyp)|mkTTyp(tt:TblTyp)
RelTyp = An » Typ
Typ == integer | boolean | text | character
VAL = Int | Bool | Text | Char

GUI type concept implementation amounts to a GUI window, usually with border icons, etc.,
for “clicking, dragging & dropping” designed window entities.

4.3.2 Data Bases

Window (icon, table) values usually reflect values of fields and rows of relational database
types:

type
RelDB = (Rn = RTyp) X (Rn #» RELN)
RelTyp = An » ETyp
RELN = RTpl-set
RelTpl = An » EVAL
ETyp == integer | boolean | text | character
EVAL = Int | Bool | Text | Char

The GUI window icon and table values displayed are obtained by attribute (An) reference
to unique key value (KeyTpl) designated tuples of named relations (Rn) of an underlying
relational database.

type
TbiTyp = Rn
Typ == integer | boolean | text | character | mkR(r:Ref)

Ref = Rn x KeyTpl x An
KeyTpl = RelTpl

4.3.3 Discussion

Notice a “homomorphism” between GUIs (ie. “values”) and types. Appropriate (primitive)
operations can now be defined for effecting value reflections: Screen display vs. database
contents, for updating the database “through” screen updates, &c.

We leave the explication here.

4.4 Discussion

We have lifted a veil over some non-standard ways of looking at types and values, and we
have sketched a general GUI vs. database mechanism.

In our forthcoming text book ([3]) we bring the above type/value design ideas together
with the work flow system design concept shown earlier.

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 49

5 Conclusion

5.1 Summary and Discussion

We have tried to conjure an image of a notion of infrastructure components. We have brought
forward both a question and a number of fragments of concurrency and type/value models of
such infrastructure components. And we have tried encircle the problem: Namely trying to
answer the question “What is an infrastructure ?” by sketching claimed engineering disciplines
of software development: Denotational, concurrency, type/value, logic, agents and language—
based knowledge engineerings.

The type/value GUI example also reflected a denotational engineering facet: A (GUI)
type denoting a possibly infinite collection of values (ie. GUI windows).

Our attempt at “decomposing” development of software into “featuring” denotational,
concurrency, type/value, knowledge and other engineering considerations is, somehow, or-
thogonal (read: Complementary to) to Michael Jackson’s work on Problem Frames [10].

An Apology: It is lamentable that my examples did not illustrate uses of other than RSL
[5]. It ought also have contained examples of uses of one or another Duration Calculus
(11, 12, 13, 14, 15, 16, 17]. I apologise.

5.2 “What is an Infrastructure ?”

An infrastructure is a collection of infrastructure components. There is synchronisation and
communication between and within the components. We have shown only the latter.

An infrastructure component is a language: The professional, specialised jargon language
spoken by professionals and users of the infrastructure component. We have focused on several
such languages: The language of “the market”, whether ordinary or electronic; the language
of logistics, whether ordinary or electronic; the language of transaction scripts and directives,
whether ordinary or electronic; &c.

We have modelled verbs of these languages in terms of behaviours over states and events.
So infrastructure components are seen as “computing systems” although they are not neces-
sarily computable !

5.2.1 A Possible Impact of Computing Science upon Infrastructures

If, what we are saying above, has any relevance, then it is perhaps this: That in future
business process re—engineering (BPR) of infrastructure components the BPR engineer may
be well served in being fluent in — and in using — the kind of informatics and computing
science concepts exemplified by this paper.

It is all a matter of language !

6 Bibliographical Notes

A book has just been published: Specification Studies in RAISE. It is edited by Chris George,
Tomasz Janowski, Richard Moore, and Dan Van Hung. It is published, early 2002, in the
Springer—Verlag UK FACT series. It contains so many relevant papers and references that
the below should suffice.

14th of May 2002, 12:16 © Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

T:194

lisboa/conc

T:195

7:197

7:198

50 SEA Seminar, Tokyo: — Informatics of Infrastructures

References

[1] Dines Bjgrner. “What s a Method ?” — A Essay of Some Aspects of Domain Engi-
neering, chapter 9, pages 177-205. IFIP WG2.3. Springer, New York, N.Y., USA, 2002.
Programming Methodology: Recent Work by Members of IFIP Working Group 2.3. Eds.:
Annabelle Mclver and Carroll Morgan.

[2] Dines Bjgrner. Domain Engineering, Elements of a Software Engineering Methodology —
Towards Principles, Techniques and Tools — A Study in Methodology. Research report,
Dept. of Computer Science & Technology, Technical University of Denmark, Bldg. 343,
DK-2800 Lyngby, Denmark, 2000. One in a series of summarising research reports
(18, 19].

[3] Dines Bjgrner. Software Engineering: Theory & Practice. (Publisher is being contacted),
2002. These Lecture Notes represent the author’s Chef d’(Evre — the summary of more
than 25 years of research, development and teaching.

[4] Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, Sgren Prehn, and
Jan Storbank Pedersen. The RAISE Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1995.

[6] Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert Milne,
Claus Bendix Nielsen, Sgren Prehn, and Kim Ritter Wagner. The RAISE Specifica-
tion Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England,
1992.

[6] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666—677, August 1978.

[7] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
[8] A.W. Roscoe. Theory and Practice of Concurrency. Prentice—Hall, 1997.

[9] Steve Schneider. Concurrent and Real-time Systems — The CSP Approach. Worldwide
Series in Computer Science. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West
Sussex PO19 1UD, England, January 2000.

[10] Michael A. Jackson. Problem Frames — Analysing and structuring software development
problems. ACM Press, Pearson Education. Addison-Wesley, Edinburgh Gate, Harlow
CM20 2JE, England, 2001.

[11] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. Information
Processing Letters, 40(5):269-276, 1991.

[12] Liu Zhiming, A.P. Ravn, E.V. Sgrensen, and Zhou Chaochen. A probabilistic duration
calculus. In H. Kopetz and Y. Kakuda, editors, Responsive Computer Systems, volume 7
of Dependable Computing and Fault-Tolerant Systems, pages 30-52. Springer Verlag Wien
New York, 1993.

[13] Zhou Chaochen, A.P. Ravn, and M.R. Hansen. An extended duration calculus for hybrid
systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 51

Systems, volume 736 of Lecture Notes in Computer Science, pages 36-59. Springer-Verlag,
1993.

(14] Zhou Chaochen. Duration Calculi: An Overview. In Proceedings of Formal Methods in
Programming and Their Applications, D. Bjgrner, M Broy, and I.V. Pottosin (Eds.),
pages 256-266. LNCS 735, Springer-Verlag, 1993.

[15] Zhou Chaochen and Li Xiaoshan. A mean value calculus of durations. In A.W. Roscoe,
editor, A Classical Mind: Essays in Honour of C.A.R. Hoare, pages 431-451. Prentice
Hall International, 1994.

[16] Zhou Chaochen, Zhang Jingzhong, Yang Lu, and Li Xiaoshan. Linear duration invariants.
In Formal Techniques in Real-Time and Fault-Tolerant Systems, H. Langmack, W.-P.
de Roever, and J. Vytopil (Eds.), pages 86-109. LNCS 863, Springer-Verlag, 1994.

[17] Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A duration calculus with infinite
intervals. In Fundamentals of Computation Theory, Horst Reichel (Ed.), pages 16—41.
LNCS 965, Springer-Verlag, 1995.

(18] Dines Bjgrner. Requirements Engineering, Elements of a Software Engineering Method-
ology — Towards Principles, Techniques and Tools — A Study in Methodology. Research
report, Dept. of Computer Science & Technology, Technical University of Denmark, Bldg.
343, DK-2800 Lyngby, Denmark, 2000. Not yet released. Meanwhile refer to [3]. One in
a series of summarising research reports 2, 19].

[19] Dines Bjgrner. Software Design: Architectures and Program Organisation, Elements of
a Software Engineering Methodology — Towards Principles, Techniques and Tools —
A Study in Methodology. Research report, Dept. of Computer Science & Technology,
Technical University of Denmark, Bldg. 343, DK-2800 Lyngby, Denmark, 2000. Not yet
released. Meanwhile refer to [3]. One in a series of summarising research reports [2, 18].

7 Figures for Section 3.2

Figure 14 on the next page shows a net, two lines, two stations, and around 64 units: nine
switches, one simple crossover, one switchable crossover, and 11 tracks.

Figure 15 on the following page diagrammatically abstracts instances of the four most basic
forms of units: A linear unit with two connectors, a simple switch unit with three connectors,
a switchable crossover with four connectors, and a simple crossover with four connectors.

Figure 16 on page 53 shows the possible states of two kinds of units: The four possible states
of a linear unit, and the nine possible states of a switch unit. Actual linear or switch units
need not span all these states.

Figure 17 on page 53 shows the possible directional captures and “freeings” of units during
movements: Situation [0] (0) depicts an initial train position. In situation [1] (1) no captures
nor “freeings” have occurred during actual movement. In situation [2] (2) Capture of one unit
has occurred wrt. [1] (1). In situation [3] (3) “freeing” of one unit has occurred wrt. [2] (2).
In situation [4] (4) Both capture of one and “freeing” of one unit has occurred wrt. [3] (3).

14th of May 2002, 12:16 © Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

7:199

52 SEA Seminar, Tokyo: — Informatics of Infrastructures

mﬁ "~ Switchable Crossover
d | | :
AP : E
N —— —tr—f=rt .
plaﬁm;‘ ------- Linear U_n-ili N
Line
- Track - Switch
X —

"
/
.

4
F 2
&

Figure 14: A Sample Railnet

— = > | <

Junction,
Linear Unit Switch, Crossover Simple
Tumout Swith Crossover
Legend - Examples of Rail Units
° connector and their Connectors
F units
can be
switched

Figure 15: Four Rail Units

Figure 18 on page 54 shows a simple route from one platform track in one station, to a siding
track in another station. The figure labels all the route units: ul — u20.

Figure 19 on page 54 shows nine trains at two “neighbouring times”: Three have not moved:
tn3,tn4,tn10. The others have.

© Dines Bjsrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

A Future for Computing Science — Monday June 17th, 2002 53

States of a Linear Unit

c c C c cC c' c c'
— ——— ——— ——
Closed Open:Cto C’ Open:C'toC Bidirectionally Open

States of a Switch Unit

c_>_4c’ (:_4_4(:'

Closed C" c” c” c”
c !ir 4 c « g
c’

¢, 7 e
c” c” ' c”

c

c—(—»é

c"

Figure 16: States of Sample Units

Figure 17: Possible Train Movements

14th of May 2002, 12:16

© Dines Bjerner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002

54 SEA Seminar, Tokyo: — Informatics of Infrastructures

‘
L
&

u10 | <- - - Route, from u1 to u20

ull
’ i bt +
nz\ s uX Rl P

—— maa— +
. A

ulé
ul?
18 u19 u20

' Figure 18: Route of a Rail Net

N
]

+
o

tn10

Figure 19: Train Traffic

© Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Denmark, 2001-2002 14th of May 2002, 12:16

SEA 4§35l Forum (June, 2002)
ITA12>T75AbS7FvOBEICHETZFRIFOKE
— JArEa—8HL T ADEE —

Z & %

DSLAYICERTHfEE A SEA DERBEIZK7Z - T, RiLDFFH Fonm(ZERE) X HEL 3.

EME, 7~ — 7 TEKFHIZD Dines Bjorner 54T . Bjorner o413, BERF CEEKREY 7+ 2 TR
BT (e H)0MRFRE L LTHEEESH, ISFST 20O EEE#EICOWVWT, bhibih SEA DFEIZVA WA THS
Wierdd F L.

4@ FoumTit, kEDER VAT LR EZBAITA VY TITAMN I 7 F v DOFHPEEICEVWLT, 22—
IHAZV AR 7 T2 T IENED L) RRENZRI-TRED, T, FOLNINLDOFFIZBITHHFER
HEHLVRERDH) FICLoTEDE I BA N7 V2525020 TBFELVWALEETT.

ITAY 79X 2Fv&id, N\ULOBEEBREIELEXOEV A AT *»IBITIHERBHLARROE
BTHY, TRIZEIKBEY AT L, SR -V REX, FRMEHI AT L4, BEEJARAZBREZEVFEINIT.
FANEDE) REEREZHEONE, EETHOEBMIATLOMN T TVORERLEFTH %L, BHNOFEETT.

Z) W) EKRT, 40O Foumid, bbbV 7 b 72 7HEREILE-TEDLODTHEBELIDELEVET. Eo
TIEML 2 &,

* Kk sa 1E g %E e sjesk sk sk ks sk ok ek kok

1. B B 20024 6H 17H (H) 13:30 ~ 17:00
2B Fh: @A TR FI01REE R - FREX HE1-13-14)
3.7075 4L (FE) :
13:00~13:30 %A
13:30~15:30 i&7& : Informatics of Infrastructure (A Future of Computer Science)
Prof. Dines Bjorner (technical Unversity of Denmark)
[EXY~Y —@R . FHZFE— (SRA-KTL)]
15:30~16:00 Break Time
16:00~17:00 HiEFHH: ITA1> 75X 57 F v D HEMA
Discussant: SEA BBHEE X Y /N\—FE
4. &h1E . SEA [ESE 2,000, ¥BI2E 3,000
5% B: S0%& (GEEMEICTHEID).
6. HiIAAFE . TOHAAKICVLESEH»METAN L, SEA FHRF T TE-Mail BHAALZSWw, 2GR EFE B
EOYLET. 48, BNMBEILHEEZMCTBIHL VK LZEVENELELLTIY). #AXAED
FrrveNVdBERIE LTBETY LET.

BIA#SE% © V7 b7 x THMTER S (SEA)
E-Mail: sea@sea.or.jp
URL: http://www.iijnet.or.jp/sea

SEA 457! Forum (June 2002) £ hN&3 A F#
R&(S) D %) . ()
Stt4 .
#RPT - 1K
. (T)
Tel: Fax:
E-Mail:
BR(RZERICF vy 7y 0OERB®MNo____ H[OEBKBEMNo____)
S . M

660

V7 bz TEAERS
T160-0004 NREM HEX TE3-12 AEEILSF
Tel: 03 - 3356 - 1077 Fax: 03 - 3356 - 1072
E-mail: sea@sea.or.jp
URL: http://www.iijnet.or.jp/sea

	V13_N5_2002_001
	V13_N5_2002_002
	V13_N5_2002_003
	V13_N5_2002_004
	V13_N5_2002_005
	V13_N5_2002_006
	V13_N5_2002_007
	V13_N5_2002_008
	V13_N5_2002_009
	V13_N5_2002_010
	V13_N5_2002_011
	V13_N5_2002_012
	V13_N5_2002_013
	V13_N5_2002_014
	V13_N5_2002_015
	V13_N5_2002_016
	V13_N5_2002_017
	V13_N5_2002_018
	V13_N5_2002_019
	V13_N5_2002_020
	V13_N5_2002_021
	V13_N5_2002_022
	V13_N5_2002_023
	V13_N5_2002_024
	V13_N5_2002_025
	V13_N5_2002_026
	V13_N5_2002_027
	V13_N5_2002_028
	V13_N5_2002_029
	V13_N5_2002_030
	V13_N5_2002_031
	V13_N5_2002_032
	V13_N5_2002_033
	V13_N5_2002_034
	V13_N5_2002_035
	V13_N5_2002_036
	V13_N5_2002_037
	V13_N5_2002_038
	V13_N5_2002_039
	V13_N5_2002_040
	V13_N5_2002_041
	V13_N5_2002_042
	V13_N5_2002_043
	V13_N5_2002_044
	V13_N5_2002_045
	V13_N5_2002_046
	V13_N5_2002_047
	V13_N5_2002_048
	V13_N5_2002_049
	V13_N5_2002_050
	V13_N5_2002_051
	V13_N5_2002_052
	V13_N5_2002_053
	V13_N5_2002_054
	V13_N5_2002_055
	V13_N5_2002_056
	V13_N5_2002_057
	V13_N5_2002_058
	V13_N5_2002_059

