
Newsletter from Software Engineers Association

l…umber 10.11.12 1990

目 次

事務局から 1

Proceedings of 由e 1st International Symposium

on Futere Software Environment 3

Preface 4

Program 5

Roster of Attendees 6

Session 1: User's Persp配tive

A.Kumagai, D.Barstow, G.Fischer, K. Ochimizu, T.Tam凶 5

Session 2: B凶lder's Perspective

M.Matsuo, L.Belady, I.Miyamoto, W.Riddle, Y.Shinoda 21

Session 3: Manager's Persp配tive

J.Sayler , R.Balzer, M.Dowson, M.Teramoto, K.Torii 39

Session 4: Researcher's Perspective

N.Saito, M.Dowson, T.Katayama, K.Kishida, L.Williams 63

Call for Papers

7也International Software Process Workshop 79

1st International Conference on Software Process 80

ソフトウェア技術者也会(立A) は，ソフトウェアハウス，コンビュータメーカ，計算センタ.エンドユーサ\ 大学，研究所な

ど，それぞれ異なった環境に置かれているソフトウェア技術者または研究者が.そうした社会組織の壁を越えて，各自の経験や技

術を自由に交涜しあうための「場J として， 19邸年 12月に設立されました.

その主な活動は，機関誌記AMAIL の発行，支部および研究分科会の運営，セミナー/ワークショップ/シンポジウムなどの

イベントの開催，および内外の関係諸国体との交流です.発足当初約 2∞人にすぎなかった会員数もその後飛躍的に増加し，現在，

北は北海道から南は沖縄まで， 17∞名を越えるメンバーを擁するにいたりました . 法人賛助会員も約回社を数えます.支部は.

東京以外に，関西，横浜.長野.名古屋.九州の各地区で設立されており，その他の地域でも設立準備をしています . 分科会は.

東京 ， 関西，名古屋てヘそれぞれいくつかが活動しており.その他の支部でも.月例会やフォーラムが定期的に開催されています .

「現在のソフトウェア界における最大の課題は.技術移転の促進である」といわれています.これまでわが国には.そのための

適切な社会的メカニズムが欠けていたように思われます. SEAIま，そうした欠落を補うべく.これからますます活発な活動を展

開して行きたいと考えています.いままで日本にはなかったこの新しいプロフェッショナル・ソサイエティの発展のために.せ'ひ

とも，あなたのおカを貸してください.

代表幹事: 熊谷章

翁任僻事: 落水浩一郎岸田孝一中野秀男野村行憲平尾一浩深瀬弘恭松原友夫

野事: 青島茂天池学新井秀明市川寛白井義美江木康雄岡田正志大木統雄大林正晴片山被昭片山卓也

加護重信加藤重郎窪田芳夫杉田義明田中一夫玉井哲雄玉川滋鳥居宏次中来田秀街中山照章

野中哲野村敏次林番人見庸蔵野晃延二木厚吉北線正顕松本省二盛田政敏山崎朝昭山田淳

渡遁雄一

会計監事: 辻淳二吉村成弘

分科会世話人環境分科会(SIGENV) :田中僕一郎渡治雄一

管理分科会(SIGMAN) :大久保功加藤重郎野々下幸治

教育分科会(SIGEDU) :大浦洋一杉田義明中園順三

ネットワーク分科会(SIGNE司:青島茂野中哲久保宏志

法的保護分科会(SIGSPL) :能登末之

支郵世話人 関西支部:白井義美中野秀男盛田政敏

横浜支部:熊谷章林香藤野晃延松下和隆

長野支部:市川寛小林貞幸佐藤千明細野広水

名古屋支部:岩田康鈴木智平田淳史

九州支部:植村正伸小田七生藤本良子平尾一治松本初美中島泰彦後藤芳美

SEAMAIL Vol. 5 , No. 10 , 11. 12 平成3年 1 月 25 日発行

編集人岸田孝一

発行人 ソフトウェア技術者協会 (SEA)

〒 160 新宿区四谷3-12 丸正ビル5F

印刷所サンビルト印刷株式会社 〒 162 東京都新宿区築地町8番地

定価 1500 円 (祭転鍛)

Message from Secretariat Seamall Vol.5, No.10-11-12

事務局から

食

あけましておめでとうございます

tr.tr.

SEA もようやく満 5 歳にまりました.まだまだひよわな幼稚園児ですが.会員のみなさんの一層のボラン

ティア努力を仰いで，少しずつ体力をつけて行きたいと考えております.どうぞ，よろしくお願いいたします.

tr. 食食

さて，本来なら昨年末に発行できるはずだった SEAMAIL Vol. 5 の最終号をお届けします.

tr.tr. 食公

今回は.一昨年秋に京都で行われた国際シンポジウムのポスト・プロシーディングということで.全ページ英

語になりました!

食 tr.tr. 食公

お知らせ(1) : 昨年の暮れに SEA の Unix Workstation がようやく junet につながりました.とりあえ

ず，会員のみなさんとの連絡用の e-mail アドレスは:

sea@sea.or.jp

となっています.どんどん mail をください. SEAMAIL への原稿もぜひ(!) . いずれ SIGNET の方々の手

で電子掲示板なども整備されると思います.

公 tr.tr. 食 tr.tr.

お知らせ (2): SEA では，平均すると毎月 2 回ずつの割合で，会員への郵便を出しています.会員の中で，

これを利用してセミナー/イベントの開催案内やプロダクトの宣伝 DM をしたいという方は御遠慮なく事務局

へお申し出ください . 幹事会の承認を得た上で，お引き受けします.料金は切手代+手数料(5 0 円/ 1 通)で

す.古い会員の方は御存じのことですが，最近新しい会員も増えたので，あらためてお知らせしました .

tr. iミ食食 tr. tr. iミ

-1-

Calendar

1n SEA Forum r 新春放談会J

SEA 1991 年の主要イベント
(いまわかっている分だけ〉

1/31・211 第 3 回ソフトウェアプロセスワークショップ

215 ソフトウェア信頼性フォーラム

218 SEA Forum r これからの中堅技術者数育を考える」

3/14-15 SEA春のセミナーウィークヲ1

3/;京 第3 回テクニカルマネジメントワークショップ

5/中旬 13出 ICSE 研修ツアー

5/30 1991 年度総会

6110-12 ソフトウェアシンポジウム '91 および併設チュートリアル

SeamaU Vol.S, No.10-11-1l

東京事務局会議室(終わりました)

静岡:伊東市

宮城:仙台農協会館(参加者募集中)

東京:機械振興会館(参加者募集中)

東京:青年会議所会館(企画中)

たぶん北海道(企画中)

アメリカAustin， Texas (企画中)

東京:機械振興会館(企画中)

愛知:名古屡国際会議場(論文募集中)

6113・ 14 3rd International S)岨posium on Future Software Envirorunent 滋賀:彦根プリンス ・ホテル(企画中)

9/上匂 第 9 回夏のプログラミングワークショップ(若手の会) たぶん盛岡

9/中旬 SEA秋のセミナーウィークヲ1 東京

10/中旬 1st ICSP 研修ツアー アメリカ : Los Angels

lO1? International CASE Workshop 中国:北京

llÞ初 第 12 回ソフトウェア信頼性シンポジウム 大阪:阪大~ホール

11120-22 第 7 回実践的開発環境ワークショップ 宮城:仙台

q 第 5 回教育ワークショップ 場所未定

[1) 東京でのイベントを中心にリストアップしました .

[2)3月以降の SEA月例 Forum は未定です.

-2-

ISFSE

Proceedings
of

SeamaH Vo1.5, No.10-11-12

the 1st International Symposium
on

Future Software Environment

Kyoto Research Park

Kyoto, Japan
November 13 - 14, 1989

Kouichi Kishida, Editor

Sponsored by

Software Engineers Association

In Cooperation with:

SDA Consortium

Kyoto Reseearch Park

-3 -

Message 仕om Secretarlat SeamaU VoI.S, No.10-11-12

Preface

This is the post-conference proceedings of the 1st International Symposium on Software Environment

held in Kyoto Research Park (Kyoto , J apan) , November 13・ 14 ， 1989.

The idea for the symposium has benn emerged through technical discusions at SDA Consortium , which

is a unique international research project to develop common framework for future software design

support environment. The symposium program was organized as a series of four panels , and at each

panel various aspects of futute software environments were discussed from four different viewpoints:

namely , user's view , builder's view , manager's view and reaetcher's view.

This post-mortem proceedings was edited by transcribing and summarizing audio-tape record of presenｭ

tations and discussions of each session. I'd like to thank deeply to Ms. Erin Karp for her excellent

work of compiling the report.

Also , special thanks to the secretarial staffs consisted of volunteers of SEA and SDAC for thier contriｭ

bution to the success of the symposium.

For your information , The 2nd ISFSE was held in Boulder (Colorado , USA) , August , 1990. And the

3rd one will be held in Hikone (Japan) , June 13・ 14 ， 1991 , just after SEA's Annual Software Sympoｭ

sium '91 (J une 10-12 at N agoya) .

Kouichi Kishida

Symposium Organizer and Proceedings Editor

Software Research Associates , Inc.

-4-

ISFSE Program SeamaU VoI.S, No.10-11・12

1st International Symposlum on Future Software Envlronment

E・lnal Program

November 13th (Mon)

Registration (9 :00 ・ 10:00)

Pane11 (10:00 ・ 13却〉

(Chalrpersons and Panellsts)

User's Perspectlve: "What will lt look llke?"

Chair: Akira Kumagai (Fujitsu & PFU)

Panelists:

Lunch Break (13 :00 ・ 15:00)

Panel 2 (15 :00 ・ 18:00)

David Barstow (Schlumberger・Doll Research)

Gerhard Fischer (University of Colorado)

Koichiro Ochimizu (Sizuoka University)

Tetsuo Tamai (University of Tsukuba)

BuUder's Perspective: "What capabillties w岨 lt provide, and how?"
Chair:

Panelists:

Reception (18:00 ・ 20:00)

November 14th (Tue)

Pane13 (9:30 ・ 12:30)

Manager's Perspective:

Chair:

P姐elists:

Lunch Break (12 :20 ・ 14:30)

Pane14 (14:30 ・ 17:30)

Masatoshi Matsuo (SRA)

Laszlo Belady (勘1CC)

1sao Miyamoto (University of Hawaii)

William Riddle (software design & ana1ysis)

Yoichi Shinoda (Tokyo Institute of Technology)

"How will lt change the process or project management?"

John Sayler (University of Michigan)

Robert Balzer (USClIS1)

Mark Dowson (software design and ana1ysis)

Masanori Teramoto (NEC)

Koji Torii (Osaka University)

Researcer's Perspective: "What will lt take to achieve lt?"

Chair: Nobuo Saito (Keio University)

Panelists: Mark Dowson (software design & ana1ysis)

Takuya Katayama (Tokyo Institute of Technology)

Kouichi Kishida (SRA)

Lloyd Williams (Software Engineering Research)

-S -

ISFSE Roster Seamall Vol.S, No.10・11-12

Roster of Attendees

Name Affiliation Inerested in

Satoru Fu長i Matsushita Communication Industry Management

Terunobu Fu員no Fu長 Xerox Information System Development

Taku Fu員oka Mitsubishi Electric Research

Takeshi Hamano SRA Development

Chifumi Hayashi SRA Use

Kaoru Hayashi SRA Development

Atsushi Hirata SRA Use

Makoto Ikeda Nihon Network Lab Management

Katsuro Inoue Osaka University Research

Makoto Ishisone SRA Development

Yasuhito Kato PFU Development

Yusuke Katsuda Nihon Unysis Management

Tohru Kikuno Osaka University Management

Ayako Kobayashi SRA Use

Masato Kondo Toden Software Management

Sadatoshi Koshihara Fujitsu FIP Management

Eisuke Koshio Hitachi Software Engineering Development

Masatoshi Kurihara SRA Development

Asako Miura SRA Development

Tatsuo Miyagi NEC Software , Chubu Use

Naoyuki Motomura Yasukawa Electric Development

Osamu Nagamori INES Use

Masahiro Nakata Hitachi Management

Fumio Nitta KDD Research

Toshi'tsugu Nomura Japan Information Processing Service Management

Yasuo Ogasawara CSK Development

Toshiharu Ohno ASCII Development

Takakazu Okamoto KCS Development

Takashi Owaki Hitachi Development

Toshihide Sakai Horiba Management

Ken-ichi Shima A TR Communications Systems Research Lab Research

Hiroshi Sakoh SRA Use

Ken-ichi Satoh SRA Research

Yoshiaki Sugita SRA Management

Norihiko Suhara Mitsubishi Electric Research

Kenzo Suzuki Fu員tsu FIP 恥Ianagement

Toyofumi Takenaka A TR Communications Systems Research Lab Research

Taku員 Takeuchi Tateishi Electric Use

Atsushi Yamaguchi SRA Use

Keiichi Yamaguchi SRA Management

Takeshi Yamaoka Keio University Research

-6 -

ISFSE Session 1

Chair:

Speakers:

Session 1

U ser's Perspective
(What will it look like?)

AUra K11Inagai
(PFU & Fujitsu)

Tetsuo Tamai
(University of Tsukuba)

David Barstow

Seamail Vo1.5, No.10・11・ 12

(Schlumberger Laboratory for Computer Science)

Koichiro Ochimizu
(Shizuoka U niversity)

Gerhard Fischer
(U niversity of Colorado)

-7-

ISFSE Session 1 Seamail Vo1.5, No.10・ 11・ 12

Tetsuo Tamai
(U niversity of Tsuk山a)

Professor Tamai started off by mentioning a book, edited by Professors Matsumoto and
Ohno, called "Japanese Perspectives in Software Engineering," which is published by Addisonｭ
Wesley. This book includes a paper by Professor Tamai entitled "Knowledge Engineering Appliｭ
cations to Software Development." He commented that this book is one of the more accessible
books for non-Japanese on software engineering in Japan, as it is not written in Japanes巴.

Professor Tamai then went on to give his presentation on a Viewpoint of Knowledge Based
Systems Engineers. In this presentation, Professor Tamai introduced SOLOMON, a Solution
Oriented Systems Design Methodology based on Knowledge, which was developed last year by
Mitsubishi Electric and Mitsubishi Research Institute. It is a methodology for problem solving
and system design, targeted for systems engineers (SE's) and knowledge engineers (KE's).

Professor Tamai said that KE training has traditionally emphasized knowledge acquisition
and representation, expert system (ES) tools, and artificial intelligence (AI) programming
languages. However, the training has not answered the following:

-what is a problem

-how to solve it

-how to design

He suggested that a KE should be a good SE in the first place. ES development has been
motivated by a feeling of "Let 's try AI," rather than one of "Let 's solve this problem." Many
KE's have a rather poor knowledge of mathematical approaches, such as operations research
(OR) and statistics and system engineering methods. For example, while building an ES for
scheduling, they "rediscover" existing scheduling techniques.

tion

Scope of SOLO乱ifON

Professor Tamai proposed that the knowledge based approach is just one of a wide variety
of useful solution techniques. A good SE needs to make use of the good techniques available. The
scope of SOLOMON ranges from problem analysis and definition to systems design. There are
two phases: SOLOMON/PD (problem definition) , and SOLOMON/PS (problem solving). Impleｭ
mentation is not within the scope of SOLOMON. He identified a number of problem types,
categorized as analysis types, synthesis types, guidance types, and data processing types.

In SOLOMON/PD, one uses a general procedure description and work sheets, as well as
related techniques such as interviewing, brain-storming, KJ /KT methods, and ISM/DEMA TEL.
One also uses general procedure descriptions, which are divided into 4 categories and 13 types as

-8-

ISFSE Session 1 Seamail Vo1.5, No.10・ 11・ 12

mentioned above. KE is one of many techniques used.

Professor Tamai said that 10 case studies had been done. Two-week seminars had been held
in the spring and fall of 1989, attended by about 8 people each. The participants were eager, and
found the seminar helpful. In February 1989, a 500-page SOLOMON manual was completed.

One question remains: Is it beneficial to have SOLOMON computer aided? Professor
Tamai is not so sure, and would like some suggestions.

Questionsj Answers

Audience:
Could you give some examples of KJ methods?

Tamai:
That is one of the techniques that 1 mentioned. If the problem fits the technique, we recomｭ
mend it. KE's are not so familiar with techniques, so we guide them. We provide guidelines
for the relation between problems and techniques.

Audience
Who decides on the technique?

Tamai:
We help them decide.

Belady:
Who are the participants?

Tamai:
乱1itsubishi Electric and Mitsubishi Research Institute.

Balzer:
How do you merge the techniques?

Tamai:
First, we define the problem, then divide it into smaller ones. The smaller problems may fit
1, 2, or 3 techniques.

Barstow:
You didn't seem to talk about real-time problems.

Tamai:
Well, we can find techniques to fit any type of problem.

Kishida:
You said that the question that remains is whether or not it is beneficial to have SOLOｭ
MON computer aided. What would be the category of that problem?

Tamai:
That's a key step in SOLOMON.

-9-

ISFSE Session 1 Seama日 Vo1.5 ， No.10・ 11・ 12

David Barstow
(Scl山mberger Laboratory for Computer Science)

Dr. Barstow's presentation focused on the SPHINX programming environment. Dr. Barｭ
stow began with the suggestion that in order to understand the knowledge engineering (KE) techｭ
nology of the future , one would need to look at the current technology. He said he would give a
description of Schlumberger・Doll's environment, where the work involves sending instruments
down an oil well. The area of interest there is an example of device control.

SIMULATED
LOGGING
TOOL

HOST

TRANSLATOR

TARGET

SPHINX Programming Environment

The SPH町X programming environment is based on the hostjtarget division, and is highly
graphically oriented. There is a simulator on the host side, and a translator that translates
towards the concurrent target.

On the target side there is a "Stream Machine," which is a model of distributed computaｭ
tion that involves concurrent processes, and communication via streams in which there is a single
writer and mu1tiple readers. A stream is defined as a flow of temporally ordered values. The basic
model is equivalent to fine-grained data flow, making it deterministic. The extended model
includes time-based constraints, and is not deterministic.

The SPHINX architecture's main user component is an editor, through which the user can
access a simulated stream machine to control a simulated logging tool. The tool gives feedback
which the user then uses to decide on further editor actions, thereby closing a cycle similar to the
edit-compile-test cycle. After testing, the program is translated from the so-called SLANG to
SMjC, a kind of C for the target stream machine.

The SPHINX editor contains a topology editor and a process editor, which are both graphiｭ
cally oriented. The topology editor allows graphical display and manipulation. The process editor
is a structure editor for C that supports multiple views on the C program.

The SPHINX simulator is a stream machine interpreter with a variable speed clock that is
advanced with each machine instruction. Also, there is an event queue for external events, as
well as a simulated environment and logging tools.

The SPH町X display is dynamically updated and is integrated with the editor. It displays
values on the streams and the states of processes (active, ready to run, waiting for data).

-10-

ISFSE Session 1 Seamail Volム No.10・11・ 12

An experiment was carried out for one logging tool, and this viability test showed that
SPHINX is quite effective. Many bugs were discovered simply by watching the display. The abilｭ
ity to simulate the tool gave greater knowledge about tool control. In the end, more than half of
the code reflected the topology of the system.

Dr. Barstow also talked about other CASE tools for design diagrams and notations,
integrated data bases, and code generators. He mentioned domain-specific spread sheets with
dynamic displays, that offer a natural interaction. Other trends he sees are increased use of
graphics and dynamic displays, reliance on simulation and prototyping, integration through pro・
ject data bases, and special purpose and domain-specific environments.

Dr. Barstow concluded by giving his predictions for the future , as shown in the following
chart:

Now Near-Term Far-Term
0・9 years 10・99 years

Domain expert Spread sheets Domain-specific Domain-oriented
notations dialogue

Programmer SPHll可X Assistance Automation
with
decisions

System designer CASE Static analysis Dynamic
analysis &
simulation

In particular, Dr. Barstow foresees automation for programming "in the small," and simulaｭ
tion on a larger scale.

Questions/ Answers

Balzer:
If there is going to be increased automation, do you think that programmers will be around
for a. while? And if expertise is going to be built into systems, do we still need domain
experts?

Barstow:
Programmers will become less and less important, but domain experts will still be around,
出 they are needed when people have questions and so on.

Dowson:
This seems to focus entirely on development in the small, rather than issues of development
in the large. Is that correct?

Barstow:
That was not the intent. 1 guess that 1 was hoping that this was beginning to address proｭ
gramming in the large.

Dowson:
By "development in the large" 1 guess I'm thinking of developments where you are forced
by the size of the problem to have large teams, even of system designers. That seemed to be
support for the system design process by the individual system designer, which 1 accept is
extremely valuable. But it doesn't seem to be addressing the problems of the co-ordination
of the activities of large numbers of people. Unfortunately, we're still facing these.

Barstow:
1 agree.

Belady:
Combined activity between the domain expert and system designer is always through the
shared database, and that's all?

Barstow:
1 would hope they would talk to each other, too. That goes back to what Mark [Dowson]

-11-

ISFSE Session 1 Seamail Vo1.5, No.10・11・ 12

W部 asking about. What sort of support might we see for communication and collaboration?

Belady:
What about having the project database external to the machine?

Barstow:
It will be far term before there is anything like that.

-12・

ISFSE Session 1

Koichiro Ochimizu
(Shizuoka University)

Seamail Vol.5, No.10・11・ 12

Professor Ochimizu gave a presentation dealing with the question, "How can we incorporate
intelligence into future software environments?" His goal was to simply express his expectations
for a future software environment, specifically with regards to integrated environments based on
the process model, and how intelligence can be incorporated into such environments. He started
by discussing a list of examples of users' requirements for a future software environment. He
pointed out that the 10 items listed were only examples, not overall requirements.

Professor Ochimizu then examined the question of where intelligence is needed. He disｭ
cussed the question with several expert designers in the Japanese software industry. Their answer
W出 that they personally felt capable of meeting the requirements previously stated, but that
most members of their design teams could not. Therefore, these experts expressed a desire to
somehow embed their knowledge into a software environment so as to raise the technical level of
their teams. Professor Ochimizu examined several ways in which this might be done.

The first possibility that he examined involves task scheduling for cost-estimation and role
assignment. This kind of work, he said, involves the extraction and sequencing of task templates
related to the current 'project features from a project-case database, which would then allow for
task scheduling, emphasizing effective role-assignment and cost-estimation.

The second possibility involves project monitoring and deliberation. Here, it is considered
desirable for a manager to monitor the natural growth of a cause-effect network over the course
of the project, developing an understanding of what is going on. Then the designers can examine
constraints that have arisen during this network as a prelude to starting their tasks.

Thirdly, process navigation and dynamic modification were discussed. Professor Ochimizu
feels that it is necessary to have some kind of navigation capabilities which can guide the novice
designer in answering such questions as "where are we now," "what should be done next," and
"how can we deal with this exceptional case?" However, it was noted that since processes from
past projects do not always exactly fit the current project, it is necessary to be able to modify the
process dynamically.

Current Status

¥
Navigation and

Dynamic Modificationl_
of a Process

Process Cases

Intelligent
Backtracking

Support

o
Process Navigation and Dynamic Modification

The final possibility mentioned was that of providing views for analyzing and evaluating
products. By creating and analyzing typed objects called "firm information" (such as
artifactsjproducts which are standardized within a projectjorganization), designers would be able
to produce a lot of information based on their own mental processes. This information is called
"soft information." Professor Ochimizu feels that "soft information" would be useful in underｭ
standing "firm information" if it were possible for designers to record the "soft information" and
to dynamically answer questions posed during specific situations.

Professor Ochimizu stated that considering the requirements that were previously menｭ
tioned, we need a process model which can deal with these requirements naturally. After a

-13・

ISFSE Session 1 Seamail Volム No.10・11・ 12

general description of a software development process, he stated that a large quantity of docuｭ
ments are produced during software development, and that these documents can be classified into
several categories. He feels that by using typed objects to redefine or rewrite a developer's way of
doing development, it would be possible to formally describe the software process. At present,
such processes as can be obtained are fragmental, and there seems to be no way in which to get a
process description. This means that a control mechanism to invoke subprocesses is necessary.
The presentation ended with a brief look at such a control structure.

Task
Network

Control 、 (じじγは口刈叫均附附|也恥蜘刷g伊伊刊Oα何r“i
Rule 一 based
Logic

1

Process

Activities ム企ム
Objects

巴
J
­

PL' C

H
U
 o

cd

芯
一
.
口
一
丸

田
一
戸
一
M

c
-
-
h
u
-
-
児

m
一O
一
m

p

一d
一
目

3
-
e

一
D

J
H
一
n
r
-
r
t

出
一
乃
一
郎

a

&
L

S

Process Model

Questionsj Answers

Belady:
Y our presentation is about how we can incorporate inte1ligence into future software
environments. What kind of inte1ligence do you mean? Is it machine-stored, or just general?
Also, execution history was mentioned in one of those charts. It's a little ambiguous,
because sometimes "execution" means program execution. Do you mean the history of the
program being developed or the history of the process?

Ochimizu:
Execution . is the process execution. As for inte1ligence, 1 think we can use some of the
results from knowledge engineering or natural language, reasoning by analogy to extract
some patterns of tasks and for extracting the process related to the features of current
work. This is very doubtful, and 1 think it can't be achieved easily. 1 think that such kind of
inte1ligence can be embedded into the development environment , and that inte1ligence will
hepp the manager or designer to grasp or summarize something. So we work using the intelｭ
ligent software development environment. Execution history is just a log of the processes.

-14-

ISFSE Session 1 Seamail Vo1.5, No.10・11・ 12

Gerhard Fischer
(University of Colorado)

Professor Fischer gave a presentation entit1ed "Domain-Oriented Knowledge-Based Design
Environments or Making Computers Invisible by Getting out of the Turing Tar Pit." In one of
his first slides, Professor Fischer characterized current software environments as either a Turing
Tar Pit, in which everything is possible but nothing of interest is easy, or the converse of a Turｭ
ing Tar Pit, where operations are easy, but little of interest is possible. He said that the goal is to
find out how to do something in the middle, between these two extremes.

His approach is to have a system that is somewhere in between manual and automatic, by
automating certain parts. He wants to come up with cooperative problem solving systems, where
human-computer communication is important.

w&IJ

[
レ

…
[
リ

WIndOWI
DW

田口

固固固

白己

口
口

"...In・ula-Kltc.... 、

'unlcal-w・・-，
叫刊jc.~w.・・2
@刷店帽-・・w・-，1nk-1

・・・・-c・bIn・‘-，
'..e-c・・蜘H・2

1・ M・ nu:t to & w・川b.s.-ublnet-S， hor旬開阻ト I・ W昨制削・，
b・・e・e・-民et-3
e山......，.，

'a.."C・・齢制・.
bo.・E・e・bIn・z・5
・.'.-C・・.....-.
...，.-c・・恥H・7
.制崎山ー制官・同trig肝副首・

JANUS' Construction Component

He intentionally wants to move away from general purpose programming environments such
as Lisp, Pascal, C and Ada, to domain-oriented construction kits with sets of reusable objects.

In the past, many people mapped problems to programming languages or even to assembly
languages. In the 1980's there were attempts to make the distance between problems and
languages smaller, by providing construction kits. For the 1990's, he predicts situations where
knowledge engineers build design environments using programming languages, and domain
experts use these design environments to solve the particular problems at hand, thereby reducing
the transformation distance to that between the problems and the design environments.

-15-

ISFSE Session 1 Seamail Vo1.5, No.10・ 11・ 12

As an example Professor Fischer introduced JANUS , a knowledge-based design environment
for the architectural design of kitchens. An artifact can be designed quickly, but that artifact is
not necessarily good. The system responds to first attempts by producing messages from critics.
For example, the stove critic might complain that the stove is next to the sink, and is therefore a
dangerous design. This feedback then allows the user to improve the design. The user can look up
the argumentation for a particular criticism through hypertext mechanisms, allowing for a dialoｭ
gue about the stove and sink. Fischer has been in contact with architects in Denver, who say that
this system provides a good model. ln this system, the critic is important because it provides a
link between the construction situation and the argumentation.

It is necessary for the enιuser to be able to modify the system, because the world is conｭ
stantly changing and because users have different preferences. For example, a user might want to
introduce a microwave into the picture. It is desirable to make changes at a high level, i.e. in the
kits. ln JANUS , it is possible to introduce a new type of appliance by using existing objects, subｭ
classing a particular superclass. For example, one might use the stove to define a new rule.

JANUS has a layered architecture, with Lisp at the bottom and the kitchen problem
domain at the top. The high levels are supposed to make the lower levels invisible. Professor
Fischer went on to talk about FRAMER, a knowledge-based design environment for windowｭ
based user interfaces. Framer allows the user to design interfaces using panes, scrollbars, and so
on that have to do with the knowledge and rules of the system. Framer sits on top of a construcｭ
tion kit , such as the NeXT interface builder.

Professor Fischer concluded by saying that his approach addresses various problems, such
as those experienced at 乱1:CC relating to the thin spread of application knowledge. It also
attempts to tackle the problem of co-evolution of specifications and implementations, which w出
brought up by Bob Walter. As a final conclusion, Professor Fischer said that he feels that
software engineering is the wrong term. There is too much emphasis on the medium. By way of
contrast, he said that people do refer to civil, electrical, mechanical and architectural engineering,
but not to wood, plastic, concrete and steel engineering.

Questionsj Answers

Audience:
How can we incorporate knowledge into computer systems? Can we use natural languages,
and would that be easy?

Fischer:
No, we should stay away from n炙urallanguages. We can obtain knowledge by talking to
domain experts and by reading books. Taking the microwave as an example, we want to
include knowledge about it at a domain-specific level, otherwise we have to descend to lower
levels, changing the programs and so on.

Balzer:
Can an expert annotate the critics and the kits, or is the system read-only?

Fischer:
No, you cannot annotate. If you delete a critic, you need to refiect that in the argumentaｭ
tion space.

Balzer:
Is it easy to delete a critic? By that 1 mean, is it procedurally encapsulating?

Fischer:
For example, if you don't want the dish-washer, you need to recompute the argumentation
space.

Barstow:
What about the work of Colin Potts at MCC , with arguments and all that?

Fischer:
Well, for every argument you have a counter-argument, and so on, to get a new position.

-16-

ISFSE Session 1 Seamail Vo1.5, No.10・ 11・ 12

Discussion

This discussion session focused on several topics in sequence. First, the panelｭ
ists and audience discussed how to define the word "user." Several people gave
their opinions, which led into a discussion on the need to distinguish between
experts and novices. The next focus of the discussion was on problem solving.
It was pointed out that none of the panelists had dea1t with this issue, and a
number of theories and concepts related to problem solving were discussed.
Finally, the question of domains was brought up. Specifically, how to define the
borders of a domain.

Torii:ln your slide about near and far term predictions you only mentioned CASE tools for the
system designers of today. Aren't there other things?

Barstow:
Well, if there are others, I would like to know about them.

Torii: What about the design phase?

Barstow:
I foresee static analysis in the near future.

Balzer:
Do you mean static analysis of the code?

Barstow:
No.

Audience:
According to the tit1e, this session is supposed to be about the user's perspective, but it
doesn't seem like that was talked about. What is the user's perspective?

Tamai:
I talked about the methodologies in knowledge engineering systems, and described the
activities and guidelines that we provide for the procedures. I don't see the motivation for
automating methodologies.

Barstow:
My table about future predictions shows the requirements for different users. Especially
dynamic analysis will be important, I think. And systems will become increasingly domainｭ
specific.

Fischer:
What is a user? Is it a domain expert? Or a systems engineer? These are also questions we
have to ask ourselves. I believe we need to make the underlying levels invisible. We need to
move away from general purpose environments, to domain specific ones. But we also need to
improve the lower levels, which requires knowledge about computers. Domain abstractions
are representations of knowledge.

Ochimizu:
I think we can say that users are designers or managers. But we should also realize the disｭ
tinction between experts and novices. In my presentation, I implicitly showed the user's perｭ
spect咩e.

Kishida:
We are really talking about communication between us and the environment, at a variety of
levels. But hopefully, the environment will only have to communicate with humans. Someｭ
times it is frustrating to find that the environment does not learn. Expert users feel the
machine is cheating them after about 1 hour of use. We need learning capabilities built into
the system.

Fischer:
Yes, I agree we need to accommodate the transition from beginner to expert. We need
adaptable systems, systems whose behavior we can change. But we also need adaptive sysｭ
tems, that are smart enough to change by themselves. We shouldn't assume that the user
stays at the same level. For example, if you know that I know UNIX, your explanation of

-17-

ISFSE Session 1 Seamail Vo1.5, No.10・11・ 12

something will take that into account.

Barstow:
What time frame do you see for these things?

Fischer:
Well, that's difficult to predict, but if you take GNU emacs, for example, it behaves
differently towards experts. But this is a research issue, definitely. 1 postulate that the 90's
will be the decade of the experts.

Kishida:
Do you foresee that the 21st century will bring adaptive systems?

Fischer:
Well, modifications can come from both sides, really. For example, let's think about init files
used in many UNIX systems today. The user can adjust them to suit his/her needs, but the
system can. also update them. But we cannot just tag on this kind of functionality -we need
to reconsider the systems.

Tamai:
Y ou can think of various types of people, for example, a teacher type, and an apprentice or
assistant type of person. Also, 1 sometimes wish to have a clone of myself, so that 1 can disｭ
cuss things with the clone. We want to discuss preferences and ways of handling personaliｭ
ties. This is hard to realize, however. But Ochimizu said earlier that he would realize this.

Barstow:
What we really need is a simple init file. And we also want others to have the same init file ,
so that we aren't confused by different bindings and preferences and so on. We need conｭ
sistency within a group of people.

Dowson:
One example that 1 can think of when hearing you talk about moving from one environment
to another, is that "rm *" might be safe on other systems, but it isn't in UNIX. Today, we
have listened to various talks, ranging from Tamai's global one to Barstow's problem
specific one. However, we have not heard a theory of problem solving. Perhaps the panelists
have such a theory. Can we proceed without a theory? And what would such a theory look
like? Would it be part of computer science, or would it be psychological?

Fischer:
Various people have influenced our way of thinking about problem solving, such as Newman
and Simon, and also Polya. We say that my pencil is cleverer than 1, but we really mean the
combination of the pencil and 1. The computer is a powerful pencil.

Tamai:
1 don't believe that there is any unique theory. We have several theories, and we need to
select an appropriate theory or technique. And we should notice the similar structure of
theories in different are酪. We need to abstract the level of the theory.

Dowson:
Yes, 1 agree about the structural similarities. It is advantageous to have more choice, so
that we can have a reason behind the theory.

Fischer:
General purpose programming environments don't scale to large problems. Domain specific
solutions are more important.

Balzer:
In researching learning techniques, we now go back to first principles. Take Sewer's DEO as
an example. In this case, we attack by chunking, in other cases by caching. The power is in
the knowledge. We need to have a generallearning capability to augment the systems.

Barstow:
1 don't think this is inconsistent.

Fischer:
There were various phases of AI: the power phase and the knowledge phase. We encode
knowledge into rules. Expert systems are brittle outside their areas. So maybe we should
look for something in the middle, with weaker methods.

-18-

ISFSE Session 1 Seamail Vo1.5, No.10・ 11・ 12

Ochimizu:
1 do not have any expectations for general solving. We need to store rules. We need to make
it so that we can reuse some of that, through an intelligent search. But 1 do not have a
dream in this area.

Audience:
My first question is, is it possible to define the borders of domains? And if so, what theory
can the user apply to make the definition? My second question is about Professor
Schaefer's research on capabilities. I'd like to isolate the domain, so that we lean more
towards the personal side of things. What 1 mean is to isolate individual knowledge as
domain knowledge.

Barstow:
Well, there are several domain models. The first is the generally accepted domain, for examｭ
ple, physics in oil wells. The second would be a subset, for example, the electronics part of
physics. The third is where we consider the performance analysis of the software itself to be
the domain.

Belady:
We're always talking about domain knowledge, but we should really be talking about sysｭ
tem knowledge. 1 would like to defend the panel. 1 think they have been presenting the
user's perspective quite well. AI provides solutions sometimes, other times it does not. We
need to realize that we have a particular problem to solve. That is what the user's perspecｭ
tive is all about. The advantage of computer aided systems is that they keep us from driftｭ
ing away too much to individualized systems. The tools keep it on track. Also, can we disｭ
tinguish simulation and prototyping? Real engineers use prototyping, but discover it's not
necessary because it simulates what we're trying to achieve. I'm a bit confused about this.
Is design a subset of problem solving, or is it the other way around? 1 recommend that all
of you see Poya's videotape in which he teaches students how to create a mathematical forｭ
mula from scratch. The process is very fascinating.

Barstow:
I'd 1ike to make a comment about the role of AI. If you take a typical system and count the
lines of code, you'll find that about 15% is AI, and the other 85% is for the user interface,
system code, networking, and so on. AI is just one of the tools. And about simulating and
prototyping: they're really very similar words. 1 realized that while 1 was writing the slide.

Tamai:
1 think a good point was made about there being less scatter by having computer aided sysｭ
tems. Methodologies aren't really for general purpose programming environments.

Fischer:
1 think the panelists tried to talk about what we should foc

-19-

ISFSE Session 1 Seamail VoL5, No.10・11・12

-20-

ISFSE Session 2 Seamail VoL5, No.10・11・ 12

Session 2

Builder's Perspective
(What capabilities will it provide, and how?)

Chair:

Speakers:

M. Matsuo
(Software Research Associates)

L. Belady
(Microelectronics and Computer Technology Corp.)

1. Miyamoto
(University of Hawaii)

W. Riddle
(Software Design & Analysis)

Y. Shinoda
(Tokyo Institute of Technology)

-21-

ISFSE Session 2 Seamail Vo1.5, No.10・11・ 12

Mr. Laszlo Belady
(Microelectronics and Computer Technology Corp.)

According to Mr. Belady's presentation, trends in computer applications back in the 1940s
were for applications to be isolated in space and time. As time goes by, such trends are changing
towards interconnection by hard wiring and around the clock applications. This changing trend,
which increases integration of software that becomes more difficult to develop, is supported also
by software. Further, to support software, people (both individual and group brains) , enabling
technology, and education must be prepared. In other words, to push computerization in society,
we have to make it possible to build complex software more easily. In order to do that, we have
to apply technology to build such an environment, as well as to educate people.

Chainging Trends

Mr. Belady then moved to a more detailed discussion of trends. The predominant trend has
been such that applications have been integrated in terms of time and space over 40 years.
Nowadays, data can be stored in the machine for longer periods of time, which means the end of
isolation in time. Also, connection into networks allows applications to enlarge the available
space. This trend has led to distrib凶ed/networked systems which require software to control
traffic and to glue together such integrated system.

The next topic in this presentation was Type A and Type B software. Type A involves the
manufacturing of pure software components, while Type B, which is called "glue software"
involves general purpose applications. The purpose of Type B is to computerize the whole enterｭ
prise, or to develop software for interconnected networks of different enterprises. To customize
Type B software, we have to be careful of the increased variety of domains, which increases comｭ
plexity. Also engineers who develop Type B software must understand the application and team
up with the "customer." Therefore, development can't be done "off-shore."

The necessary capabilities for individual system designers, according to Mr. Belady, are
tools, a platform, and information handling/presentation facilities. Tool/Information spaces must
be saved not only for programming, but also for system design. The environment must have an
H W catalog/taxonomy, as well as a domain DB/KB and system simulation. All of these should be
held in a platform. Information handling/presentation facilities should include such things as
Hypermedia, in-machine transformation of informal to formal, scaled up, topology oriented graphｭ
ics, and animation in support of system simulation.

Necessary capabilities for a group are communication, coordination, and training. Communiｭ
cation includes groupware, local/remote electronic meetings, and easy access to remote sources of
information from the workstation. Coordination technology to exploit concurrency in the
development process is important, but the best processor is human organization. Regarding
training, one paradigm of software projects is mutual teaching. Mr Belady feels that this environｭ
ment may be good for CAI.

-22-

ISFSE Session 2 Seamail Vo1.5, No.10・11・ 12

Mr. Belady warned that we have to be careful about the enabling technologies which pop
up in front of us, and said that we should grab them at once, in order to enhance productivity. In
the hardware category there are things like MIPS, multimedia, large area displays for meetings,
and bandwidth to transmit animation. As for the software, general/standard topology packages,
animation languages, OO.DB, and scaling up of virtual displays are available.

Mr. Belady finished with a look at education. There are, he feels , two kinds of education:
typical school education, and retraining to catch up with improvements in the field.

Saito:

Questions / Answers

What do you mean by the last sentence of your OHP on education, where you say, "All the
above represent Software opportunities themselves?"

Belady:
Teachers are too busy teaching new students to take care of retraining. Retraining should
depend on CAI. That means that education itself can be a business.

-23-

ISFSE Session 2 Seamail VoL5, No.10・11・12

Pr~f~ssor Isao _~iya~oto
(University of Hawaii)

Professor Miyamoto gave a presentation on looking towards the future of software support
environments. To start with, he wanted to give some personal observations about software supｭ
port environments, and then introduce some ideas that he is, in co-operation with Bill Howden of
the University of California, trying to carry out for tomorrow's software support environment. In
his personal observations, Professor Miyamoto first listed several points about existing environｭ
ments, and then suggested that for the future, along with several other requirements, software
environments must support human essential activities for software development and maintenance
to make use of 100% of computer potential. He then discussed a number of experiences that he
has had in his work with software development environments.

?
明
$
削

戸

V
R
M

一作問3B 刷帥斗e肘J1lいl
l_一一J

Software Maintenance Assistant System

Professor Miyamoto then went on to point out a number of things that he finds to be
important for future software environments, focusing on the software lifecycle model and support
environment. Next, Professor Miyamoto gave an example of their Software Maintenance Assisｭ
tant (SMA) system, which he plans to have finished by the end of next March.

He focused more closely on the user interface part of their environment, and then the com・
ponents of the SMA system. Professor Miyamoto explained the natural language-oriented UI,
called MOANA, which will be delivered with the University of Hawa�'s specific SDA. Next, he
showed a sample of the CPM graphics which MOANA can generate.

To conclude, Professor Miyamoto gave the opinion that more user-oriented support environｭ
ments should exist. He does not think that process-model-oriented environments are the best posｭ
sible idea, but rather should be implicitly kept inside the system.

-24-

ISFSE Session 2 Seamail Vo1.5, No.10・ 11・ 12

Questions/ ﾁnswers

Audience:
My question is about the balance of adaptability that the user is really able to decide.
Because the more freely adaptable the system or user interface is, the more difficult it is to
debug or trace certain adaptations that the user makes. 80 to define the balance, how much
adaptability is produced for the user, and how much constraint is needed on them.

Miyamoto:
The first thing is that the object to be adapted may include many thingsj the user interface
maybe, or objects, or tools, or sometimes the knowledge-base. 80 depending on the object,
you must decide the balance or trade-off. But the important thing is the support environｭ
ment. Adaptable support environments must be organized in this way: knowledge or model,
and actors, programs. 80 components, or information about the adaptable thing shouldn't
be imbedded in the program. 80-called model-driven architecture is a must. I'm not answerｭ
ing your question, but if you achieve the architecture of the support system, and a mechanｭ
ism to keep information about the component which must be adaptable in the environment,
as a knowledge-base or some other thing, it is very, very flexible.

-25-

ISFSE Session 2

Dr. William Riddle
(software design & analysis)

Seamail Vol.5, No.10・ 11・ 12

Dr. Riddle gave a presentation on support for flexible, disciplined software processes. The
main topic of his presentation revolved around the questions of "what do we need to put into an
environment to support processes,

Environments in the future should be based on specialized workstations which are used by
domain experts such as systems engineers, software engineers, customersjend-users and managers.
All of these are gathered into one generic environment, which would support the user interface
paradigms that are natural to each person. One aspect of physical configuration is the networks
of workstations.

TASKlACTMTY SUPPORT
USER-INn:RFACE PARADlG仇E
rnSONAL PREFERENCES

CUSTOMERS

・nd
END.USERS

A Distributed Software Development Environment is a network of workstations

Processes that are supported provide a balance between discipline and chaos. The issue is
to take that chaos, discipline it, focus it, channel it, and converge it so that the result can be proｭ
duced on time within a budget. What Dr. Riddle wants to do is to find the balance between
top-down constraints to enforce some discipline, and bottom-up cooperation among people sharｭ
ing activities. Bottom-up cooperation is a collaborative problem-solving that is carried out in
terms of people working in their own contexts, and mutual influences between these contexts.
This is highly evolutionary. On the discipline side are found constraints which result from topｭ
down thinking, the ability to confirm progress and make plans and assignments, and the idea of
convergence over time.

IUSER: Rlddle PROJECT: Sゆ T∞15 RO凶:P吋ectMan申r

工.Q..D.Q

Call M. Dowson
CheckMail

Read Spec

Develop Plan
ESlimale Cosl

A Possible User Interface

One possible user interface is to have the workstation screen display what context people
are working on and indicate the types of activities. Meanwhile, the system provides information

-26-

ISFSE Session 2 Seamail Vo1.5, No.10・11・ 12

to the environment that would support the current activity. For process management, the followｭ
ing supports are required. First, support for an information base, such as shared, persistent inforｭ
mation and distributed databases, are required. The ability to view information in various ways
outside of the information base is also required, as well as support for precise process manageｭ
ment, such as consensus building and negotiation, constraint definition and enforcement, and task
identification, assignment and monitoring.

士:::~::::::::::: ~::~::::::::::::~:::::::::::布時;~:8::~::~:::高官、、γ:お':::ハ号訴乙:::::::T誌史時~竿話~ø~~
J山内ハ湖沼長八社日V\、制御、之内h端部e恐縮対:::::::X::~::::~:~~中長 1

PROCESS
STEPS 、

司、、.an.cauac

間四回、閣可制 EVENTS

~
PERFORMERS

Fundamental Process Management Conceps

Support can be provided by a process server, which is oriented towards the task of managｭ
ing processes, and which is responsible for accepting process related information about managed
and unmanaged operations as steps in the process of work to be done, information about the
agents performing this work, about the constraints upon the process steps and agents, and about
significant events. Then, the process server performs the requested actions based on this informaｭ
tion, and handles events by notification, defau1t responses or invocation of supplied handlers. The
process server also keeps an inspectable history.

.,/
J戸

PROJECT
MANAGEMENT

TOOLSET

ASSIGNMENT
DEF1NITION

TOOL
---・ー

WORK ASSIGNMENT

TASKTVPE

TASKID

PREDECESSORS

REQ'D RESOURCES

PRODUCTS

STARTTIME

ENDTIl岨E

ASSIGNEDTO

ROLE

Process Server Interface

Finally, Dr. Riddle talked about the process server interface. One part of the interface is
specifically defined data items called work assignments, which indicate the nature of the various
tasks. The manager who develops the work assignments utilizes the already existing project
management support tools, and uses them to develop work assignments.

-21-

ISFSE Sessﾍon 2 Seamail VoL5, No.10・11・12

Dr. Yoichi Shinoda
(Tokyo Institute of Technology)

Dr. Shinoda gave a presentation on "Objectbase based Integration of Software Environｭ
ments." His goal was to examine the more practical side of future s~ftware environments. and to
look at what cmbe started today, not sometime in the distant future.The basic premis-of this
presentation w出 that the objectbase will be the integration base for future software environｭ
ments.

Authoring
Layer

Objectb田e
Layer

What is Objectbase b部ed?

First, Dr. Shinoda examined the question of "why objectbase based?" At this point he
expressed the belief that we must start now to put software objects into an objectbase-not to
wait any longer.Next, he moved on to a discussion of what is meant by "objectbase b部ed:"

\、、A凶hortnl Layer
、、

Objoclb“.Lar省、

-
"
・

sω..w.射圃-

Simple Example

-28-

ISFSE Session 2 Seamail VoL5, No.10・ 11・ 12

In his structure, there are three layers. The bottom layer, the objectbase layer, is a shared
database of software objects, a software object class library, tool objects, operators and several
additional object capabilities. The centrallayer, the mediator layer, provides an interface for the
objects in the objectbase layer to interact with conventional tools. Finally, the authoring layer is
probably going to be a Hypertext-based browsingjauthoring tool, similar to the interface builders
provided by Next computers and the prototypes for Macintoshes and PWB.

After a look at an example of what this structure willlook like, Dr. Shinoda explained what
he feels to be the most important capabilities which objectbase based integration of software
environments provides. In answer to the question of whether or not we are ready for this, Dr. Shiｭ
noda feels that as far as hardware technologies go, the answer is yes, whereas the answer is not
yet for software technologies. In conclusion, he asked for the start of collection of software process
objects to fill the class library.

Questionsj Answers

Audience:
Is a human being a software object?

Shinoda:
I've never considered humans to be software objects. I'm not sure whether the answer
would be yes or no.

Audience:
What part of a software object would a human being be?

Shinoda:
In certain cases it would be useful to treat humans as objects. It's a good idea but 1 personｭ
ally don't like it.

-29・

ISFSE Session 2 Se回nail Vol.5, No.10・ 11・ 12

Audience:

Discussion

This discussion session was quite long, with Mr. Belady doing a lot of talking.
The first major topic in the discussion was that of the integration of heteroｭ
genous systems. Sub-topics included how such integration could be done, when
it should be done, and whether it is possible. Next, the discussion shifted
briefly to the issue of technology transfer, before moving on to a brief discusｭ
sion on the desired granularity of software objects. Several participants disｭ
cussed various issues related to the evaluation of technology before it is
released. Next, a large amount of time was spent discussing Mr. Belady's con・
cept of Type A and Type B software. Finally, the question of the scalability of
environments was examined.

1 have a question for Mr. Shinoda. 1 think your environment is very practical, but your
presentation is rather based on the builder's view. l'd like to know how you write programs
under such an environment.

Shinoda:
Basically, each object has two types of attributes in my model. There is an equation which
defines the inputjoutput relation, and you can use external functions or external tools. It's
data dependency driven, so whenever there's an input in the input attribute, the external
function would be involved, it would be popped up as a window or something like that.
The process of creating applications is a chain action of automatic invocation of tools or
functions. If you write every dependency correctly, you can obtain the correct output from
the final output attribute.

Audience:
In the near future , we would want to pick up good points from various environments here
and there. How do you deal with such needs?

Riddle:
1 think you are saying that a good objective must be able to collect together the existing
technology and get it to work together. And you are saying that there should be individualｭ
ized workstations for each individual person on the team. 1 think both of those objectives
are good, and it's the only way to succeed. But getting a set of workstations working
together doing networking, or even getting a distributed database, is a difficult problem.
Getting tools to work together is the difficult problem. We need technical solutions to that
problem, and to get people who build tools to observe some relatively simple guidelines
about the openness of the tools, whether we can get in and make changes. Since these
kinds of guidelines have been developed, technical people would respond well to suggestions
and follow the guidelines. But there are some economic and strategic reasons within com・
panies why they do not want to follow guidelines. We have a management problem in
terms of getting these guidelines accepted.

Miyamoto:
We have to use formal and informal technology as well 剖 graphical and textual techniques.
In regard to hardware, we have to use a variety of hardware capabilities, such as RISC ,
Prolog, Smalltalk, or UNIX machines. Also, we have to use a group of workstations and
supercomputers.

Belady:
From the answer, 1 don't understand the question. Have you asked the following: Since
today different people use quite different hardware and software pieces, how are they going
to transit into some kind of a future glorious environment? Is that the question? How do we
integrate heterogenous different systems into one?

Audience:
Yes.

Belady:
Okay, then 1 understand the question, but not the answers. It's a very tough problem, and 1
think 1 have two different comments about it. One of them is that it occurred to me that

-30-

ISFSE Sessﾎon 2 Seamail Vo1.5, No.10・ 11・ 12

one panel session is missing, and this is "technology transfer." Y ou see, the problem is that
all of us on the technology side have nice dreams, and we have, particularly in the environｭ
ments area, the tendency of dreaming up future environments, and 1 appreciate very much
that it's fun. But let's talk about today, not necessarily the future. The reason is that how
can you architect something in the future when you don't even have the experience about
its components? The current thinking is that you have to work hard on the components of
the different aspects of it , and gently introduce it into the troops, and keep improving it,
and adjusting it to the demands of the population in the current environment, and unforｭ
tunately in different environments. It becomes extremely costly, because if 1 come up with a
tool, say gIBIS , 1 don't have my own future environment yet in the research organization,
and therefore 1 have to port it to four or five different environments to gather a rich enough
experience of how it works. And 1 do it with different components. 1 don't think the "big
bang" works. That we design a glorious new environment and watch the people with their
silly stone-age things and wait for a day when 1 say, "Now stop these silly stone-age things.
Here is my beautiful thing, isn't it nice." There is no way to do that. So it has to be evoluｭ
tionary and piecemeal. Another related eπ'ort ， which we started because we had to, is some
serious study, by trying to do it instead of just theorizing about it, how heterogenous tools
can work together, or heterogenous machines. So a part of the project now is actually what
1 call "integration technology." Finding out good ways of having different platforms, if you
like, different tools, different pieces of technology working together on a single platform.
The other set of comments is that there is good news with this kind of standardization. We
are talking, in some sense, about standardization. That will help, but until there is some
reasonable progress there will be lots of misery in this area. 1 think, although we should
dream about the future , occasionally we should descend into the mud and worry about
these things. Otherwise, our dreams become implemented as laboratory animals without
ever being able to go out into the jungle.

Barstow:
The use of standards as a way of having tools communicate is only part of the problem. It
may also be that tools have to share a kind of common framework, or appr

-31-

ISFSE Session 2 Seamail VoL5, No.10・11・ 12

extensions and additions to environments? We seem to be proceeding by building new tools,
we have these new ways of thinking about things, but do we encode in that knowledge a
way of assessing, or even for establishing criteria for evaluating this new technology?

Belady:
Obviously you are a hard-nosed manager, because these guys keep asking these questions a1l
the timej how do you evaluate it before using it? 1 think we've been thinking a lot about it,
but it turns out that evaluating this kind of technology is a very expensive process. And 1
envy those people who are developing other kind of technologies which are not manifesting
themselves being useful in the hands of people. 1 really honestly do not have an easy
answer to your question. 1 myself worry about it, because that's part of an obstacle to techｭ
nology transfer. It's that chicken and egg problem, that someone says, "alright, 1'11 buy your
technology if you prove to me that it'll bring me benefit ," and then 1 say "well, first you
have to buy it, and then you'll observe it." 1 think somehow cultural change should take
place such that there is a willingness from those who need that technology to accept that
you need money to evaluate it. Otherwise, it will be a very slow process.

Miyamoto:
There is one organization who is doing evaluation of technology, and that is the University
of Maryland and NASA software engineering lab. They haven't experimented yet on
advanced software support environments, but they are evaluating somehow some traditional
types of technologies for programming or testing or basic software maintenance type things.

Sayler:
Wouldn't that perhaps be more specific art江acts that they are looking at, rather than proｭ
cess or environments in the whole?

Riddle:
Or to put it different1y, there's the question of how to get somebody to buy some piece of
new technology versus how do they decide which instance of that technology to purchase. 1
think actua1ly that Maryland is looking more at the second question than the first question.

Miyamoto:
The important thing is discussing evaluation issues without having any kind of preconcepｭ
tions or biased ideas. Then you can measure by making creative use of technology by having
an objective set up, a measurement method. 1 think they are doing a pretty good job.

Riddle:

Saito:

1 want to make a response to John's comment. 1 used to be at the Software Productivity
Consortium, and like Les we had the problem of keeping our customers happy. My feeling
was that there are two things that companies can do to foster tech transfer and to get
evaluative information back and successfu1ly help people understand the value of the new
technology. The first one is kind of a silly one, and that is find somebody who you don't
have to convince, preferably that person should have control over the money that you're
asking for. It is a critical element, to find somebody who is not looking for the data, but has
a basic gut feel that the technology will be valuable for their organization, and they're usu・
a1ly at the strategic level in the organization. The other was to focus on a very sma1l part
of the customer base to generate that critica1ly needed positive experience that will then
help the rest of the customer base understand the value. So one thing we were doing at
SPC w回 going out and identifying a single project within one of the member companies,
and working very closely with them to get them to use the technology and evaluate it themｭ
selves, and do a little bit of self-inspection and come out with some information that other
parts of that company or other companies could use to understand what it meant to them.

1 completely agree with Mr. Belady's opinion to divide the software demand into type A
and type B. Maybe he insists that we need to shift from type A to type B. But unforｭ
tunately, Japanese industry doesn't consider type B to be important. Maybe you know that
several big companies, very famous ones, have a contract with only one. Many Japanese
companies consider that type B is only one yen, while type A is maybe $100,000. From my
personal experience, we are now planning to build a large-scale campus network, and we
have contracted with SRA and ASCII as an integrator, be

-32-

ISFSE Session 2 Seamail Vo1.5, No.10・ 11・ 12

irnportant US people consider type B to be.

Belady:
1 did not attach irnportance to A relative to B, like blood types. 1'11 te11 you the context
where 1 first talked about this type A and type B. There was, in the US earlier this year,
the National Acaderny of Sciences organized workshop on the cornpetitiveness of the US
cornputer industry. 1 prepared this thought for that particular panel that 1 was on. And
without attaching irnportance to one or the other, 1 concluded that they are different with
respect to where they can be produced. Both are irnportant. It's like saying what is rnore
irnportant, to build airplanes or to build blades for turbines. Both are irnportant. One is
cornponent-oriented and one is the assernbly of the whole. The truth of the rnatter is ,
though, that while type A software sort of has the notion of being able to be a cornponent
in different systerns, shared like a tire which could be used on a Toyota and a Mercedes
interchangeably, and can be developed everywhere else, type B software has to be very
rnuch related and localized, very intirnately working with the people who are in that particｭ
ular application, and cannot be done against a specification which sits sornewhere and the
other people do it. 1 rea11y very strongly believe that this will happen soon, because in
alrnost every other industry it happens. The type A activity is working toward the cornｭ
ponentry, and the type B is assernbling and reconfiguring the cornponentry in a particular,
specific, individual application. 1 think if you think about it, that it's clear that you cannot
easily say which one is rnore irnportant, one or the other. Both are irnportant. My final cornｭ
rnent is, type A can be shipped everywhere, and this is in other industries as well. If you do
the car assernbly, the type B activity, it's close to where the rnarket is. But the type A can
be anywhere on earth, and it is shipped. But the assernbly process has to be closely related
to the ultirnate custorner and the user. This is why 1 believe that this script will happen.

Barstow:
Just one rnore cornrnent on the type A and type B. 1'rn not sure how closely they
correspond, but there's a sense in which the type A sort of corresponds to the cornponents
and type B sort of corresponds to the glue. We did a couple of experirnents of counting lines
of code, and it looked to us like the lines of code corresponded typically to about 60% w出
glue, and 40% was cornponents. So frorn that point of view, it says that 60% of it, if there is
a good corresponde

-33-

ISFSE Sessﾎon 2 Seamail VoL5, No.10・11・ 12

irnportance of dornain knowledge, will be rnuch accentuated. So what it rneans is that a
rnuch larger nurnber of people have to be involved in the process of designing type B
software, which will be a trernendous load on co-ordination, cornrnunication arnong people,
etc. I'rn not clairning that technology is the only solution, but this is a rnuch rnore cornplex
problern than writing type B. 1 think our friends on the expert systerns side could help a lot
in order to corne up with knowledge acquisition which is rapid enough to do it during the
project itself. So we bet on good players and cornputer aided co-ordination of this process.
This is our current ernphasis, because individual productivity is not enough, probably, in
systern integration.

Audience:
As Mr. Shinoda has pointed out, nowadays object-oriented database rnodels or adaptable
user interfaces are considered very effective cornrnonly. That rneans that application proｭ
grarnrners also want to put such a capability into their product. So 1 guess that it is possible
to adapt sorne part of the software environrnent facility itself into a product. In other
words, when can the software environrnent itself be divided into sorne sort of objects, or in
other words when does the software environrnent itself becorne reusable? I'd like to ask your
opllllOn.

Shinoda:
Y ou want to sell the software environrnent itself, is that the question?

Belady:
1 think sorne of the Japanese cornpanies already use that concept, the EAGLE, 1 think by
Hitachi, environrnents for COBOL programming. They were automated environments, and
these companies, both Fujitsu and Hitachi, developed these systerns quite well in the late
70's and early 80's with the intent to sell on the rnarket for those who were interested in
automated or computer-aided COBOL programming. Now with respect to configurable
object-oriented design of an environrnent , 1 think sorne of them are coming now. Some comｭ
panies in the US are developing it for their own purposes. UNIX is an environment for sale.
Now if there are any of those developed object bases, 1 think the object experts should take
over and list those. But you are absolutely right that future environments will be built and
are being built using, hopefully, the same techniques they are preaching about.

Shinoda:
1 guess the Smalltalk package is one example of an application which comes with its own
software environment.

Fischer
Just a comment on this last thing. In some ways 1 feel these innovations are quite slow
because Smalltalk has been around for at least 15 years, and it now seems that objectｭ
oriented techniques are the newest kid on the block, but one could also argue that it's at
least 15 years old. But 1 wanted to come back to this question of type A versus type B
software, and 1 think that at the moment，剖 1 tried to argue, there still are software
engineering people too much concerned with type A activities. 1 think that if one looks into
complex systems, there are arguments that complex systems evolve faster if they can build
on stable sub-systems. So 1 think what we have to do, in part, is to provide these stable
sub-systerns, and as we go up in layers, moving further away from type A activities, we will
be increasing taking into account what are the semantics of these things which will be
deterrnined by the application domain. 1 feel that there's some resistance among the
software engineering community, because we have to give up this notion that our software
products will be applicable to all kinds of problems, and software engineers are, in my mind,
too much concerned with this general applicability. So 1 think if one looks at the engineering
of complex artifacts, one sees that we need to have these layers, and what didn't come clear,
or what 1 didn't see from this panel, is what ste

-34-

ISFSE Session 2 Seamail Vol.S, No.10・ 11・ 12

broader band of communication with a different kind of background for people. That is, the
groupware co-ordination and all these computer aided technologies should be added much
more to the environment than just focusing on the individual capabilities, and supporting
these individual capabilities. 1 don't know what will make it possible, but many of the
things which your panel discussed, namely the customization of an environment's many winｭ
dows into it for that person's particular needs and expertise is important, and then interｭ
nally translate these things somehow in a computer-aided and perhaps automated fashion to
make it understandable for the others, because they have to share the concern about this
developing design which happens to be an integrated thing. On the one hand there will be
the domain experts, and on the other hand experts on the different sub-components, and
they have to ultimately totally combine as a community to design the systems. 1 think it
would be very useful to rethink this environment, because of the aforementioned issues, into
a much more computer-aided instruction environment. That is, use lots of technologies
which we could, perhaps, import from the computer-aided instruction people to convey this
insight, and partial insight, and component insight to other parts of the community, the
developing community such that the different aspects of the system become understandable
for everybody involved. Another thing occurred to me which 1 think Bill Riddle mentioned,
and perhaps many others. 1 do not have an answer for it, but at least 1 share the problem
which was mentioned. Namely, so much information will have to be stored which is related
to this integration process because the domain knowledge, the component knowledge, the
system knowledge, programming knowledge and so forth , are all necessary and it will be
impossible to absorb and even manipulate it easily by the participating individuals. That is,
in this environment 1 think we have to worry about data compression techniques, or filterｭ
ing techniques.

Miyamoto:
Maybe 1 can add one thing. Some of the software in type B, as time goes by, may become
type A, or some of the type A software may become B, so 1 think the synergy between
software and software, or hardware and software should be considered in the future.

Williams:
I'm not quite sure why we ended up picking on type A and type B software in a session on
the builder's pers

-35-

ISFSE Session 2 Seamail Vo1.5, No.10・11・12

metaphor which says that it doesn't have any structure, that what you think of, especially
when you think of it in terms of the components, is meatballs and spaghetti. The meatballs
are the components, and the spaghetti is somehow tying all this together, and 1 think that's
wrong. That's really what 1 want to address, is that there really are two components to this
type B, which we haven't distinguished yet. One part of it is the domain specific informaｭ
tion which is what specializes the system, and why it's not in a component, and it's the real
structure of whatever you're going to build. 80 in some sense, the architecture of some sysｭ
tem is likely to be the type B, and that becomes more so the more domain specific you get.
The other part of it is what people commonly refer to as envelopes, which is the stuff you
build around a component to make it fit in with other stuff. And this, it seems to me, is
more properly called the glue part, and that isn't highly structured at all. It's just a coerｭ
cion type mechanism. The part 1 really want to focus on, and 1 think Kishida・san Was quite
right in saying that this part which is structured is also likely to change. Not necessarily
because it w剖 wrong， but because people are likely to bring in more information, and the
addition of that information is going to change the total of this complex, and one goes to
different structures in order to do that. 80 in that sense, going back to the glue analogy, it
may be more ゚ uid but yet it is highly structured. 1 think we need tools to help us with these
different 部pects of what is taking the off-the-shelf components and somehow composing
them to produce something useful. And again, there are two parts to that usefulness. One is
an adaptation part, which does coercion, and that's glue-like, and the other part is the real
structure that makes it domain specific and allows you to customize what's happening.

Belady:
1 agree with you that sometimes 1 talk about these things, like "the design of type B is
reconfiguring." 80metimes 1 call the software not the glue, but the traffic control. That 's
another way. Because that is indeed what it is, because it's a dynamic thingj information
ßows, control ßows, and traffic control takes place. Another comment which 1 would say is
that 1 think during this discussion now, we give too much thought towards original design,
namely the matter for the pieces off the shelf out of which put the new system together.
But remember how 1 introduced this whole probl

Balzer:
1 agree with the fact that these are trends, that we're learning how to do these things, that
in general by abstraction we sort of slowly learn what's going on, but many people 1 know
in the computer-aided design community are saying that one of the big problems there is
that they don't have any 泊fr酪tructure. Each of them has, in some sense built theﾎr own
monolithic systems, and there's no agreement yet as to what kinds of components would
provide the right basis for doing the kind of integration that you're talking about. Now they
all like to do that, but the question is "do we as a community know enough to identify
those good parts?" And it seems to me that that's one of the slowest things, the community
learning of what the right abstractions are. That's why traditional fields like mathematics,
which had 300 years to figure out what the right abstractions are, do so well. Everybody
knows what the right things to put in a mathematical sub-routine library are.

Audience:
What does the term "infrastructure" mean?

Balzer:
"Infrastructure" is a building base, a platform, which could be a set of components.

Audience:
From the builder's point of view, I'd like to ask especially Dr. 8hinoda and Dr. Miyamoto
about the scalability of the envﾎronment. 1 mean, maybe the methodology which would be
applied to the small project and the large project would be different from each other, but in
both c回目 we'd like to use the same infrastructure, or the same tools, or environment, or
user interfaces. What is the scalability issue in, for example Dr. 8hinoda's objectbase based

-36-

ISFSE Session 2 Seamail Vo1.5, No.10・11・ 12

system. Can your system handle from the very small granularity system to the very large
scale?

Shinoda:
In my version system, the scalability will be provided through hierarchical composition of
software objects.

Audience:
The general strategy to solve the complex system is "divide and conquer" if it can be easily
mapped to the hierarchy systems. But sometimes, even usually, we'd like to treat all of the
stuff at one time, but usually to solve the complex problems you divide the problem into
small parts and you treat each problem as independent, and you have the assumption that
there's no interaction between these small pieces. In the real situation, in the human world,
there are many interactions between the divided small pieces. In that c出向 we should treat
all of the pieces simultaneously. In that case, the simpleminded hierarchy strategy would be
harmful.

Shinoda:
Y ou mean you want to express something like the project party in the software environｭ
ment?

Audience:
After the project starts, sometimes you'd like to treat all of the project 酪 some division of
some company.

Miyamoto:
The basic idea might be to build a small one, the size of a toy. Y ou may not want to use big
hammers and nails and that sort of thing. So the idea is that if you want to develop a small
or micro-sized system, the tools or facilities should be compact enough, simple enough. But
in the case of large systems, a large complex system may have a variety of 出pects. So mulｭ
tiple views must be supported. Different characteristics are there, so one single technique,
one single view, or one single whatever is not sufficient. So for the complex large system,
you should apply a variety of techniques, tools, and methods. So 1 think in the case of
large-system development or maintenance, a reasonably large-scale system or facility may

Audience:
1 completely agree that we need to use a variety of tools for the nature of the problem, but
at least we'd like to use the same, for example, user interface, but in the existing state, in
most tool systems we cannot use the same look-and-feel system because they have different
platforms.

Miyamoto:
I'm not sure about platforms or inside support environments, but at least the user interface
of the environment itself should be compatible, from small ones to large ones.

-37-

ISFSE Session 3 Seamail VoL5, No.10・11・ 12

Session 3

Manager's Perspective
(How will it change the process or project management?)

Chair: J. Sayler
(Software Analytics)

Speakers: K. Torii
(Osaka U niversity)

R. Balzer
(University of Southern California)

M. Teramoto
(NEC Corp.)

M. Dowson
(Software Design & Analysis)

-39-

ISFSE Session 3

Professor Koji Tor�
(Osaka U niversity)

Seamail Vo1.5, No.10・11・ 12

Professor Torii gave a presentation on how future software environments will change
management from an academic point of view. He stated that since he is an academician, not a
manager, he could only discuss academic experiences.

Professor Torii started out by discussing definitions of the word "management," both the
concrete meaning of the word and what it implies. His conclusion, after integrating several of
these definitions together, was that management is something that can be discussed in terms of
products and processes. The skills that he feels are required for management include planning
(projects) , organizing (teams) , staffi.ng (teams) , directing (processesjproducts) , and controlling
(processesjproducts) , as well as tools, knowledge and experience.

Next, Professor Torii mentioned the three projects that are being conducted in his own
laboratory. These projects involve the independent development of three different subsystems.
The first of these systems is called SQUARE. This is a system which co-ordinates and transfers
information and requirements from the user to developers' terms. In other words, the SQUARE
system is concerned with co-ordination between the user and the developer. The system takes
the requirements which are stated by the user, and maps them to the developer's activities. This
project is being joined by a large number of people from the industry, and it is now at the point
of beginning experimentation.

Requirement
analysis

経幹
User冊qJir・何官同S

Product

Evalua皿ln results

oordination

一…一一

Coordinator

SQUARE

Technical 副渇明阪国

円ocb:t

門司帽sslproó.回

melnCS

Ev剖岨画。nr・sulta

Integrated Software Development System

Development

総予
PDL

Analysis

様P
GINGER

The second system is a developing system named PDL. In this system, first a process
description is written, as in process programming. The next step is a process script, which is writｭ
ten in a process description language. Since PDL is a low-levellanguage, a higher language called
structured PDL is used. The PDL description is interpreted by the interpreter, which then
automatically activates tools according to the PDL script. The results are shown through a winｭ
dow system, which is monitored by the programmer.

The third system is called the GINGER system. The GINGER system consists of four com・
ponents: data collection, data management, data analysis and information feedback. The feedback
information can be of great use to students. For example, they may be told that the program is
insuffi.cient and that more work must be done, or that too many changes have been made.
Although Professor Torii began his presentation by emphasizing the division between product
and process management, he stated that currently this system combines product data collection
and process data collection. For product data collection, mechanisms like SCCS and RCS are
used, while only the Unix accounting system is used for process data collection.

-40-

ISFSE Session 3 Seamail Vo1.5, No.10・ 11・ 12

System
adm�i.strat:or

Programzr睡X

Overview of PDL system

..... 岨同D・咽旬F町田.
&0咽岡国国同副・・

一
時
照

…
酔 DaI8

AIa旬....

D・・ fk田 ーーー­
co幅削 fk同・・4・・

Infonn.llon
h側め・ck

System architecture of GINGER

-41-

ISFSE Session 3 Seam必1 VoL5, No.10・11・ 12

Professor Torii then returned to the question of what management is. He feels that regardｭ
ing configuration management, a standard definition can be found. Here, the important aspects
are seen to be identifying, defining, controlling, recording, reporting and verifying. He feels that
these are activities which can all be found in the experiments that have been going on for the
past 5 years at his university.

Professor Tor� explained that in a paper by Humphry, five process maturity levels are
found. The first level is "initial"j second is "repeatable" (basic management control)j third is
"defined" (process definition)j fourth is "managed" (process management)j and fifth is "optimizｭ
ing" (process which can be controlled). Looking at the three subsystems described above, Profesｭ
sor Tor� feels that the PDL system, which tries to define the process, corresponds to the third
level. GINGER, which measures and analyzes the process, corresponds to the fourth level. And
SQUARE, which accepts user requirements and transforms them into developers' terms may
reach the last level, as it hopefully will allow for the assurance of software quality. However, Proｭ
fessor Torii again pointed out that these three systems are being developed independently.

匡豆国
measurement

[GINGEJi]

回

Process maturity levels by Humphrey

Faced with the question of where to go from here, Professor Torii stated that the first step
is to make clear the role of each subsystem. Then the subsystems should be integrated. It is desirｭ
able for the subsystems to allow the overall system to attain higher and higher levels of controllaｭ
bility and manageability for the environment.

-42・

ISFSE Session 3

Dr. Robert Balzer
(University of Southern California)

Seamail Vo1.5, No.10・ 11・ 12

Dr. Balzer gave a presentation on what future software environments will, in his opinion,
look like. He emphasized that although he is a technologist, not a manager, he asked to be put on
this panel because one of the things it addresses is how will it change the process. That is, to him,
really the key issue. He began with the question of what future environments will look like, and
attacked the question through extrapolation. His opinion, as a technologist, is that we are very
close to being able to build systems that will be able to do all of the things that he feels a future
environment should be able to do. Examining the main themes of the presentations from the pre・
vious day, Dr. Balzer concluded that their themes were essentially in agreement with his concluｭ
sion. He feels that through those presentations we got a flavor of the ways that we can extrapoｭ
late what we are doing now towards our future systems. However, he feels that automating
current practice is not a desirable thing to do. Instead, he would like to use the capabilities that
everyone has been talking about , capabilities that we are beginning to have the technology to
support , to change the current process, particularly to improve it.

high.level

scecification
(prototype)

Specifica tion
Validation

Maintenance

decisions 晶
rationale

formal
development

low.level
specification

Extended Automatic Programming Paradigm

source

program

Dr. Balzer showed that in the traditional waterfalllife-cycle model system, one usually goes
from requirements to informal specifications, do coding, validating, testing, tuning and mainteｭ
nance, all in the concrete source program. However, he feels that the main thing that is wrong
with software today is that all of the feedback loops are done on the right-hand side of the
diagram. He agrees with the many people who have said that we must move more of the intellecｭ
tual activities into the final processes.

Dr. Balzer pointed out that the kind of system we've been trying to build is one that supｭ
ports a process in which a formal specification acts as the centerpiece of the system, which can
then be used as an operational prototype of the system. This means that you can do your validaｭ
tion on that specification, and what you 're doing isn't actually validation, it's invalidation. Y ou
find out that the specification is wrong, and it is not the spec of the system that people really
want. Then you have to iterate several times before you get the specification right. Then what
he'd like to do is to automatically compile the specification, but the trouble is that if you've been
at all aggressive in your spec language, the distance between a good high level spec and an optim・
ized program is too great for even the so-called smart AI compilers to bridge. He feels , therefore,
that what we need to do is to somehow get people's decisions and rationale into the system
through some sort of an interactive system to guide us down to a low level specification that can

-43-

ISFSE Session 3 Searnail Vol.5, No.10・ 11・ 12

be automatically compiled.

Dr. Balzer then discussed what he thinks is the fundamental problem that we have in
software systems. There are actually two problems. One is the inherent dilemma between optimiｭ
zation and maintenance. Optimization is the process of spreading information. Y ou take advanｭ
tage of what you know in one place some place else. This builds up the interconnections between
all of those parts , and those interconnections are not explicit. They make it much more difficult
to change the system, because maintenance wants this information to be localized. Unforｭ
tunately, both maintenance and optirnization are required for the sarne set of prograrns, the ones
that are around. Current practice pessimizes the situation, because we take the rnost optimized
form of the system that we have, which is the output of the hurnan prograrnrner, and we try to
do maintenance on that. 80 what is being suggested is that maintenance ought to be done instead
by modifying the high level specifications, and by high level specifications we rnean not optimized.
Dr. Balzer stated that everybody is aware that virtually any change to a prograrn can be
described in a sentence or two. Doing it, however, can be arbitrarily hard, because instead of
doing it at the spec level, prograrnrners always operate by trying to take the optirnized code, and
that is much, much harder. So the suggestion is, let's stop beating our heads against the wall,
instead do it the way we describe it to one another, and just re-irnplement. The other problern
that we face is that design, and by design is meant optimization, occurs outside of computers.
It's done inside peoples' heads. It's unrecorded, unanalyzed, and rnaintenance depends on this
information. Right now people who are doing maintenance have to play detective. They have to
work backward from the source code to figure out what's going on in the systern. So what Dr.
Balzer would like to do is to get an explicit rendition of this, and there are several people working
in this direction. The previous day there was some discussion about the argumentative systerns,
that the way of recording the argurnents constitutes design. This is sornething Dr. Balzer feels we
need to take and put in our systems and base our technology on, because if we are going to do
maintenance on the specification, then it means that every tirne we maintain the program we
need to rederive it. And when we rederive it, two things need to happen; the re-deri

-44・

ISFSE Session 3 Seamail VoL5, No.10・11・ 12

effect perhaps may be the biggest one. That is really getting a handle on reuse. Dr. Balzer thinks
reuse is very hard as currently described, because it requires that people have enough foresight
ahead of time to have created the thing that you want to reuse. If we can be successful with near
misses, then we have greatly increased our chances. He stated that if he can find !,omething
that's close to what he's interested in, and if he can do adaptation, because we just take the thing
we want to reuse and evolve it a little bit by changing its spec, and then using the recorded
development to re-implement it, then he thinks we have a firm foundation for really doing reuse.

Dr. Balzer then closed his presentation with a brief look at how we are going to distinguish
future environments. He thinks the answer is by changes in the process. In the current environｭ
ments, what we do is maintain the optimized code and design outside the computer, whereas in
future environments, we are going to maintain the specification and rederive the implementation.
To him, that is a very clear distinction between the current generation of environments, and the
ones he thinks are worthy of the name of being called future environments.

-45-

ISFSE Session S

Mr. Masanori Teramoto
(NEC Corp.)

Seamail VoL5, No.10-11-12

Mr. Teramoto gave a presentation focusing on his concept of a software factory as a future
management area. He feels that this idea is a way of making current technology development
more effective. Although he admits that the term "software factory" gives the impression of a
greasy and gloomy atmosphere, he feels that it would be the most convenient place to manufacｭ
ture products using advanced technology, thereby allowing for improvements in management
style.

The role of software factory engineering

In Mr. Teramoto's image of an advanced software factory, production is viewed as a cycle,
with the usual kind of production line as a process. Requirement analysis, testing and inspection
are also included. Given a need for pre-support, meaning activities with the customer before signｭ
ing the contract, an adaptation area is also needed. Additionally, post-support is necessary after
the product has been shipped, along with an information base for products and parts. Other
necessary areas of the software factory are documents, quality and productivity data, process cost
data, personnel, equipment, resources, and subcontracting capabilities.

One concept of the advanced software factory is called Software System Attributes (SAA).
This concept deals with the question of what kind of product should be produced in the factory.
There are several aspects to this question. First, there is the question of the domain in which the
product will be used (busine民 public ， home, etc.). Next there are system characteristics, such as
on-line, real-time, batch, and TSS. AIso to be considered is the operation environment (standｭ
alone, LAN, WAN, distributed processing). The question of functionallevel includes such possibil・
ities as application programs, operation systems and built-in software. The quality level is also
important, looking at such things as levels of reliability, function, and e酪e of use.

-46-

ISFSE Session 3 Seamail Vo1.5, No.lO・ 11・ 12

Mr. Teramoto then examined another concept called software factory architecture (SF A).
He explained this to be the necessary work and activities for producing software. This includes
such things as communication within the factory, research and development, sales and operation
support, production lines, and management systems. The factory information base is extremely
important for managing the software factory. Also necessary, however, are a methodology paraｭ
digm and fundamental technology. This technology includes things like computers, a communicaｭ
tion environment, factory automation and even the human factor.

Mr. Teramoto explained that since there is not just one single type of software, different
kinds of software factories can be derived depending on the situation and characteristic domain.
Once these have been clarified, a model is made and a software factory specification drawn up.
Next the software factory itself is constructed. The software factory should be evaluated, and
information about how well it works should be fed back into it. Currently, no automated measｭ
ures for deriving such a software factory exist, but in the future Mr. Teramoto hopes that such a
delivery system can be automated.

Mr. Teramoto then concluded his presentation by examining a number of pieces of data colｭ
lected within his company regarding conventional software metrics and management.

-41-

ISFSE Session 3 Seamail Vo1.5, No.10・ 11・ 12

Mr. Mark Dowson
(So仇ware Design & Analysis)

Mr. Dowson gave a presentation on his version of project management and the evolution of
process, from a project management perspective.

Unlike Bob Balzer, Mr. Dowson would like to support and evolve the best of current pracｭ
tice. He also believes that better processes, evolved processes will indeed reduce team size. But
not sufficiently to eliminate management, which seemed to him to be Dr. Balzer's suggestion.
However, Mr. Dowson also believes that fundamentally, Balzer and he mostly agree on what has
to be done. But, he thinks that they were addressing slightly different aspects of the overall pro・
cess.

Mr. Dowson started off by taking a view of what software development consists of. As Bill
Riddle suggested, he sees software development as being an activity based on constrained
cooperation. It's a cooperative activity subjects to constraints, but not constraints which make
all the participants totally submissive to some higher authority.

Cooperation, of course, requires planning, and it requires coordination of behaviors. A
mutual coordination by agreement, some third-party coordination, and a certain amount of topｭ
down management are necessary. 羽Tith constraints which prescriptively or proscriptively define
the limits of acceptable behaviors, people are told those things that they must do and those
things that they must not do, and those define some limits within which they have freedom to be
creative.

Given that perspective of software development, Mr. Dowson believes that a whole specｭ
trum of levels of concern can be identified. One can distinguish, to simplify, two basic levels of
concerns. One is the macro-level, the large grain, where we are talking about things like project
organization, the efficient utilization of resources, the scheduling of project tasks and coordinaｭ
tion, prediction and monitoring of the course of the project. These are, as it were, classical
management activities. And then at the finer grain level there are issues like, just how do you
perform the project tasks, how do you efficiently use tools to accomplish the goals of tasks, how
do you sequence activities within tasks, what development standards do you apply for tactical
development , and so on. Mr. Dowson stated that the apparent disagreement between Dr. Balzer
and himself is that he was mainly addressing the macro levels of concern, and Dr. Balzer mainly
addressed the micro levels.

When addressing the macro levels, Mr. Dowson says that we are dealing with what is called
project management, the subject of the panel. Here we're concerned with planning, guiding, moniｭ
toring and, when necessary, re-planning the performance of project tasks. How is that done
currently in many software projects? It is done essentially by managers with very little support.
A project manager knows about, may even have access to, written corporate standards or project
standards on how to run projects. A good manager from his experience has, implicitly, some proｭ
cess definitionsj how do you run projects, how do you run different kind

-48-

ISFSE Session 3 Seamail Vo1.5, No.10・11・ 12

really good managers around. There's also very little automated support for the performance of a
project plan and for monitoring it. A lot of that is just clerical tasks that are perfectly adapted
for computer based support, but there is very little computer based support for current ways of
executing, managing projects. And, there is no systematic way to improve the process built in to
that. Managers, through experience, learn to do things rather better, and that's about all. There
isn't really a great deal of system.

CORPORATE
STANDARDS

.. PROCEDURES

•

IMPUClT
PROCF.5S

DEf1NmONS

ち
ホ
〈

DEVKLOn.'

Current Project Management

So, what would we like to see? What should future project management be like? In essence,
Mr. Dowson thinks that there are very similar activities. A project manager uses project planｭ
ning tools to produce a project plan that a team executes. But there should be some differences.
What he would like is that at the execution end of things, instead of litt1e bits of the plan being
handed out to individual team members, there is environmental support for the execution of the
project plan. That is, the project plan, something very similar to the kinds of good project plans
that we have today, drives an environment that the team of developers use to do their jobs. This
makes it very much easier to automate many of the clerical aspects of software development and
to generate reports systematically, which can then be used to actually drive the re-planning proｭ
cess, if necessary, so that managers can get information at the appropriate degree of abstraction
in order to do their planning and re-planning tasks better.

Future Project management

Mr. Dowson stated that this is really the effort of people who are ta1king about process幽
driven environments. At the other end, the top end, how do we arrive at better project plans? He
would like to be able to have ways of creating abstract project plans, process definitions, at a
higher level of abstraction that can be used to guide the manager in producing a good project
plan for a specific project. These are talked about as process definitions. A lot of process modelｭ
ing effort is directed towards finding abstract representations of plans whose execution can then

-49-

ISFSE Session 3 Seamail VoL5, No.10・11・ 12

be automated. If we can do that, we can talk about improving those process definitions by
abstracting information from the actual performance of projects and from the plans that we use
to drive the performance of the project, to create better process definitions.

We now have a new role in this enterprise, process designer, who gets information about the
history of project performance, who uses process definition tools to produce better process
definitions, which can be used by actual project managers in project planning. And now there is
not so much information you have to rely on that's entirely in the heads of people.

Here, success depends not so much on the skills on the individual project manager, but on
the availability of good process definitions. There is automated support for plan performance and
monitoring, and because there are explicit representations of the process, there's an opportunity
for systematic process improvement. Mr. Dowson said that he would not like to pretend that
doing this is going to be easy. There are still quite a lot of problems that need to be solved. But it
seems to him to be a reasonably coherent program for improving process, and improving project
management at the macro level, which is not at all in contradiction to Bob Balzer's view of how
we should improve the software process at the more detailed and technicallevel.

-50-

ISFSE Session 3 Seamail Vo1.5, No.10・ 11・ 12

Balzer:

Discussion

During session 3, the chair asked that all questions be held until the discussion
session, so a large part of this session was devoted to questions on the indiviｭ
dual presentations. There was a long discussion on the differences in the
viewpoints presented by Dr. Balzer and Mr. Dowson. Next , the discussion
shifted to a look at management techniques regarding large groups and small
groups. This led into an examination of some problems which are encountered
when introducing new technology. The next major focus of the discussion was
on the comfort level of developers. The discussion looked at how that level can
be measured, as well as what management can do to improve comfort. Moving
on, an analogy was brought up comparing different management styles to cenｭ
tralized state planning economies versus free-market economies. This analogy
W出 used by several participants to illustrate their views on management. A
brief look was taken at education of developers as a function and responsibility
of mangement. Finally, the participants looked at the rates of change that
take place in both technology and human thinking.

The issue that Mark (Dowson) raised was the difference between the micro-and macroｭ
levels, and aside from the fact that 1 don't particularly like to be put in the micro box, 1
would have drawn it a little bit differently. Nevertheless, it seemed to me that on one level 1
was arguing for the difference between domain specific and domain independent , that the
kind of environment that 1 was trying to paint was trying to look very deeply at what it is
that is our domain, which is the software development domain, and asking what's unique
about it , that we could really leverage in the way we constructed our environments. My
answer was essentially trying to separate optimization from specification. The thing 1 find
very exciting about explicit process is that 1 think we can, by making process explicit and
by building environmental support for monitoring activities, and providing feedback, and
measuring progress, that we really can do a lot better, and in fact achieve the kind of things
that Mark had on his last slide. But what 1 wanted to point out was that in our endeavor to
do that , we're switching back to a domain-independent approach. That is, 1 didn't see anyｭ
thing in what Mark was describing that was unique to software. So again, as a technologist,
what 1 don't know is management. What 1 do know something about is

Balzer:
One final note. Again, from my limited perspective of management, I'm amazed at how well
small groups can work together in the kind of very rich fabric that gets linked between the
people, and the way that they interplay their various capabilities. On the other hand, my
view of large project management is not one of co-ordination, but one of separation. The
key dictum is, let's divide up the work so that people can independently do their things.
The whole idea of management is, let's separate people rather than having them work
together, because that's in some sense all we know how to do once things get up above a

-51-

ISFSE Session 3 Seamail Vo1.5, No.10・ 11・ 12

certain size. So again, from the perspective of one of the guys that might be in a small box,
1 find it much more interesting to be in one of those boxes with a small team that isn't tryｭ
ing to separate me from a whole bunch of things, but allows me to have a rich co-ordination
mechanism.

Dowson:
The re剖on for that is that there's such a high complexity of interaction in a large team
that without doing a certain amount of separation it's very difficu1t to manage. And again,
that's the opportunity. The fact that we can have computer-based support for managing
that complexity in a way that is not one that just isolates people is a great opportunity if
we can find out how to do it.

Barstow:
Bob, might this mean that your model, your slide, might only apply up to a certain size of
system development, software development?

Balzer
l'd be more than happy if it applied for some size. If you're willing to grant me that l'm wilｭ
ling to take it.

Barstow:
But in terms of your goals or expectations, it may be that there is a limit beyond which it
doesn't really make sense to think in terms of your model.

Balzer:
Well, it's certainly the case that the difference between the freedom that you can have
within a small team and what you can do with a big team is, 1 think, a fundamental one
that has to do with the number of people. It doesn't matter very much about the technolｭ
ogy that you've got to support it. lmagine a very large system, something on the scale of
the electronic switching systems that the telephone companies are building, or something on
the nature of an operating system. Y ou ask yourself how large a team, with the right techｭ
nology, would be necessary to maintain (l'm not talking about building right now, just
maintain) a thing like that. 1 can imagine that being quite a small number. If we really
could capture all of the design decisions that went into the creation of this large system,
and all we had to worry about were the changes to it that were the resu1t of new functionalｭ
ity or new performance requirements being added or something like that , and large amounts
of the replay were done by automation, then you might even be able to handle systems of
that order. So there may not be the demand for really having large teams if this technology
comes into being. Now there will always be some outlyers which you can only do by very
large teams, and 1 don't think l'm addressing that. The question is, how much of the total
software activity that we're engaged in falls into that

Barstow:
Now you were, just then, talking about maintenance, not the original development.

Balzer:
Well, in the original development, it seems to me, you need more people to make those deciｭ
sions, and they require more kinds of different skills. It's not just the amount of people, but
the skill set that's involved in doing that. But again, we know that for many systems, even
large systems, the vast majority of the design work is done by a small team. A small set of
people get together and do the architectural design of that system, and then they farm it
out to large numbers of people to actually do the implementation. So even there 1 think
there's some evidence that we as a community have really only learned how to control relaｭ
tively small teams.

Williams:
Just a brief observation on the difference between science, magic and religion. If something
happens and everyone in the room understands it, you're dealing with science. If something
happens and one person in the room understands it, you're dealing with magic. And if
nobody understands it, you're dealing with religion.

Balzer:
Well, maybe the answer is that we're trying to put it into the science category, and that's
what the research is all about. That is, trying to build enough technology to support someｭ
thing like that. One of the things that 1 didn't say is that the 阿部on that this is future is

-52・

ISFSE Session 3 Seamail Vol.5, No.10・ 11・ 12

that it is an approach which requires a fair amount of technology to make it real. We don't
have that technology yet. So the only course that's open to us today is to maintain the
source code. What I'm hoping is that at least we'll recognize that that's not the way we
should be doing it, and that more people ought to engage in the creation of the technology
to make it science, rather than either religion or magic.

Ochimizu:
I'd like to ask Dr. Balzer, do you think your paradigm can change the current development
style of NEC revolutionarily? Can you do it partially or totally, supposing you were a
manager of NEC? 1 think it is a very important problem, to change the working style from
some level, to move to another new paradigm.

Balzer:
For me, NEC is a domain independent concept. There are two really hard problems. One is,
what do you do with all of the old code? We've got huge amounts of systems out there.
How do we handle that? 1 don't have a good answer for that. What 1 took you to ask w剖
the second hard problem, which is how do we use, let me say old people? Old in the sense
that they've become accustomed to one way of doing things. How do we get them to change
both the tools and the ideas which they're using? And 1 think the introduction of any techｭ
nology is a very tough thing. We've got some real experts here in the audience. 1 think by
and large the successes we've had have not been in transmitting technology, but rather in
moving people. You get somebody who understands it, and you get them to go into an
organization, and they become the means by which that organization can incorporate it.
The short answer, 1 think, is that we need some successes. What we need is that instead of
people like myself talking about what might be possible once we have the technology, first
of all we've got to get the technology, and then we've got to do some case studies which
show that it really works. I'm not talking about small differences in effect. I'm talking ordｭ
ers of magnitude better. If it works, it'll be very easy to notice it. Once you have that, then
1 think there's a chance of a few people in different places adopting it, and then they're the
ones who can really help make it work within an organization. But it isn't going to happen
real quick.

Ochimizu:
I'd like to hear a discussion between Dr. Balzer and Dr. Teramoto to recognize the gap
between the ideal and reality.

Teramoto:
Basically, 1 completely agree with Dr. Balzer. The way of thinking is something different. In
Japan, as 1

-53-

ISFSE Session 3 Seamail Vo1.5, No.lO・11・ 12

abstract and build a good specification that doesn't deal with optimization issues, the more
you have pushed the hard questions into implementation, and 1 think that's appropriate.
But then you have to deal with them. What 1 don't believe is that we can build automatic
systems that are going to be smart enough to resolve those optimization questions. Instead,
1 think we have to get the insight of people, and probably many different people, to use
their best judgement as they do today when they actually go out and build those things, to
decide what kinds of optimization to employ. What 1 want to do, though, is to have that be
the only input we get from programmers, is decisions about optimization. That the actual
carrying out of those optimizations is something that should be done by machine, which is
because it's clerical in nature and machines can do a much better job of that than people.
What we'd like to do is to have people have the opportunity to build dozens of large sysｭ
tems, or dozens of alternative implementations of the same large system, so that they can,
through feedback, see what kinds of optimizations really work, and in particular how
different optimizations interplay with one another, because they're not independent. There's
a high degree of interaction between many of the decisions that you make in a large system.
What we need to do is to give people better tools.

Katayama:
1 have a big concern about the correlation between the behaviour of the program and
specification. If the nature of the two languages is very different, suppose you have a bug
which can only be detected by running the program, and suppose you fi.nd that kind of
behaviour fails to be detected at run time. It must be very difficult to locate the errors in
the specifi.cation if the two languages are very different.

Balzer:
This is the problem of mapping concepts in the implementation with concepts in the
specifi.cation. You're right that the larger the distance between those two, the harder it is to
maintain those mappings. On the other hand, the more that those mappings were actually
carried out by transformations performed by the machine, even if selected by people, the
more we can instrument or augment those transitions with mapping information, kind of
the way that right now we require compilers to provide some mapping information between
the source that they take as input, and the object code that they produce as output. We
could do the same sorts of things wi

Barstow:
Either you or 1 can say this, but there's a third piece. There are three artifacts, at least, in
the slide. One is the spec, one is the code, and the third is that formal development that
Bob talked of. The description of the steps that he took to get from one to the other. And
it's a very crucial piece.

Balzer:
The other part of the answer is that many of the implementation decisions we take are
what 1 would call "weak implementations." That is, they don't fully meet the requirements
of the idealized spec, and because of that , they actually result in an augmentation of that
specifi.cation which occurs down at the implementation level in implementation terms. So for

-54-

ISFSE Sessﾎon 3 Seamail Vo1.5, No.10・11・ 12

instance, the decision to use computer arithmetic for something that is expressed in the real
world, provides the opportunity for an overflow. You don't have overflow in the real idealｭ
ized world. This is only something that can occur because of the implementation technology
we've employed, and because of that you may have to introduce how the system responds
to an error there. So you say, "wel1，江 we get an overflow we do the fol1owing thing." But
that is an augmentation of the specification that's caused by the particular implementation
choice you've made. Another more realistic example is what happens when you decide to
use real computer networks as the way of supporting a distributed system, and you know
that the links in that distributed system may go down. So you have to augment your
specification of the ideal distributed behaviour by what you're going to do when you can't
communicate with different parts of the system.

Dowson:
That makes me worry about one aspect of your slide. 1 think it's quite correct that one
should be paying more attention to artifacts of the specification end of the process than at
the implementation end of the process. But you still seem to have this kind of cutoff
between the two stages, where you do a lot of work to prepare the specification, and then
that's done, and now you start implementing. What you have just been saying has been
recognizing that it is not as clear-cut as that. I've been looking at some projects that have
been done in the UK , where they've been using formal specification techniques as a way of
approaching implementation, and specifying "in z" and then building systems in objective
c. One of the comments of the company who are doing this is that a critical 田pect of that
approach to development is to refine and maintain the formal specification throughout the
implementation phase.

Balzer:
1 certainly believe in that. 1 thought 1 said several times that what you really want to do is
to maintain the spec, and part of maintaining the spec is changing it in response to insights
that have been gained while you have been thinking deeply about the system, which occurs
during implementation. We get lots of good ideas during implementation, not only of limiｭ
tations of things that we can't do, and therefore have to employ these weak implementaｭ
tions that reflect back in changes on the spec, but also other opportunities, places where we
find that the spec didn 't recognize the overlap between two differe

-55-

ISFSE Session 3 Seamail VoL5, No.10・11・ 12

Teramoto:
We started our research activities nine years ago. At that time, comfortableness, or the
work situation, was the largest subject of study. At that time, the usual office situation was
very bad. Very narrow places, no workstations or personal computers, and a lot of paperｭ
work. After that we made arrangements to do some study on what is an appropriate space
to work in. After such studies and some practice, we got some standards about the working
area, and many people answered that it got more comfortable. But most impressive is that
after they each got a workstation or personal computer, they became very motivated. There
was a great improvement. 1 think comfortableness is not only the living conditions, but how
smoothly the work progresses. 1 think it should be measured by such 回pects. We usually
use a questionnaire style to measure whether it is comfortable or how much productivity
has raised. Usually the management side and the engineer level are very different in these
numbers, but sometimes it is well correlated.

Dowson:
I'd like to comment by describing two different companies, which 1 will not name. In one of
the companies they use very systematic development methods, formal specifications, a disｭ
ciplined process which has a strong emphasis on reviews and inspections and on quality con・

trol. In that company, the developers know what they are supposed to be doing, they have
clearly defined objectives, these are realistic objectives, and management takes good correcｭ
tive action if something is difficult, if a problem arises. From talking to them, these are very
happy and comfortable developers. They like working there. 1 know another organization
where no・one knows what they are supposed to be doing, and management is by exception,
or a better way to describe it is "management by panic." When the deadline is exceeded, all
the management runs around in very small circles shouting. Nobody there is happyj they
are not comfortable, because there is no disciplined process. No-one understands what they
are supposed to be doing, and they are not well supported in doing it 回 a co-ordinated way.
Now, on the surface, the people in the first company have less freedom , they are subjected
to more constraint. But this is constraint to do things well, and when that is the constraint
that is applied to the developers, people like it and they're comfortable.

Sayler:
It was suggested in a small discussion yesterday that perhaps

-56-

ISFSE Session 3 Seamail VoL5, No.10・ 11・ 12

problems that we have to overcome today, may not be part of the process at all. We may
be in a very different kind of environment. There is room, it seems to me, both for optimism
and for caution.

Barstow:
Mr. Teramoto, in your reuse 1 guess you have libraries or a set of components or something.
What is the granularity of those components?

Teramoto:
The reuse area, the granularity of this kind of thing is rather large compared to the usual
kinds of packages. That kind of area is domain specifìc，酪 you say. 1 think current1y we
have such reusability at large granularity.

Saitoh:
My question is non-scientific. 1n the last slide of Teramoto-san's presentation, he showed
bottom-up and innovation, although NEC's software factory is very rigidly managed. 1
doubt if innovation can be generated through rigid management. In the presentation given
by Bill [Riddle] yesterday, he pointed out that it is important to balance between discipline
and chaos. Discipline is rather a top-down constraint, and chaos is rather a bottom-up
cooperation. 1n Mark [DOWSOIれ environment ， he added the process definer for the process
manager. It is rather dangerous to give too many constraints to the developers through the
process definer and process manager. In real society, it has turned out that communism is
bad because it gives too many constraints to the human beings. 1 doubt that the environｭ
ment or the process management give too many constraints to the software engineers. I'd
like to ask all of the speakers about this problem.

Teramoto:
I'm sorry, but 1 cannot explain the details of my idea. What we are doing now is to make
some arrangements with the management that is like the solution of Eastern Europe. Until
now we've had a more concentrated policy towards managing all the software production.
What we are doing now is to distribute to each site. Each management should have their
own objectives, and they need some reasonable measures to make their objectives. That's
why we make such kinds of productivity curves and quality curves. 1t depends on their
situation. After that we ask the management "how did you get these objectives," and let
them explain their measures for co-operating with that improvement. They should think
about how they can improve their own situation. At that tirne we have the chance to put in
some new technologies. If they need some new environment we introduce new technology
and let them raise their own indexes. As you know, our busines

-57-

ISFSE Sessﾎon :1 Seamail VoL5, No.10・11・ 12

would like to emphasize the importance of measurement.

Audience:
1 have two questions. One question is, in Japan we always include education in mangement.
Maybe the culture is different, 1 don't know. Do you think we have to think about educaｭ
tion, or not? My other question is that of course an environment will change day by day.
For example, we have a local area network, so we have to manage others areas of people. I'd
like to know if you think management will change or not in the future.

Dowson:
Education certainly is very important. How one manages the education, acquiring new skills
剖 an integral part of doing development is something that 1 don't think we understand
very well, but 1 agree that it is very important to do that. The dynamic 田pect of manageｭ
ment, are you asking whether what we have to do will change?

Audience:
1 don't know, but maybe some actors or some arguments will change.

Dowson:
1 think that there are two ways in which change must happen. 1 don't think that you can
statically plan how a project will proceed, because the world changes from unexpected
events, or if it's a long-running project because new techniques, methods, tools, equipment
arise. If management is not capable of accomodating that , then it won't work. That's within
a project. Between projects, the kind of world that we do projects in is changing, it's
becoming more distributed, there's more computer power available, technology is going to
let individuals do more. That's great. And the techniques we use to manage work as our
environment and technology evolve, are going to have to change. And again, we don't
understand that very well, but it is clearly important.

Torii: Y our comment reminded me that the education of programmers has become a good busiｭ
ness opportunity. In Japan, preparatory schools are very good business. The reason is that
there are very big, severe entrance examinations for the universities. But when we think
about software engineering, we don't have any exams at all. How can we certify the levels of
engineers? Maybe we have to think about evaluation systems. In other words, we have to
show them the goals or sub-goals. In my experience, if we can give programmers information
about their goals, we can improve many things. Even if we think about the education sysｭ
tems, 1 think that there are lots of ways we can improve their skills, technologies or motivaｭ
tions.

Balzer:
From the kind of things that I'm talking about, it's clear that ed

-58-

ISFSE Session 3 Seamail Vo1.5, No.10・ 11・ 12

question is that recently in the United States the subject of co-operative work and coｭ
ordination has come into focus. I'd like to know if that kind of approach to activities is in
the Japanese traditional way of doing things. So I'd like to hear your opinion or comments
comparing any similarities or differences in the approaches of Japan and the US in terms of
this subject.

Teramoto:
For the first question, we have the same argument in our company, exactly 出 you said. We
have people who are against our approach. If we show only the productivity in lines of code,
there may be such a problem. If you see the year by year curve, it's very easy to underｭ
stand the productivity raise. In the future we will try to compare with more accurate
indexes or measurements, but currently it is nice to compare year by year, only to see. We
don't evaluate the difference of each productivity and quality. We only look at the trends.
We find that many divisions have the same tendencies and the same levels, and it is very
useful for the management. Recently many division managers have agreed to this kind of
data collection, but they still have some questions about the accuracy of that data. In the
future we will have more accurate measurements. For the second question, 1 think that the
objectives are the same as our co-operative work and quality control activities. In Japan,
small group activities are very suited to our people's characteristics, who wish to have the
same objectives and the same group, and to communicate with others, and also to improve
the work environment. In the United States and Europe, people pay more attention to indiｭ
vidualism, their first intention is to improve their own abilities. But in Japan and the
Orient, people's intention is to raise their group's abilities. We've had some discussion about
automation and motivation, so in Japan the motivation is first , and after that they take
such automation as environments and tools. In the west , they first try to introduce automaｭ
tion, because human ability depends on such kinds of tools. So first they intend to raise
their abilities using such automated tools. That is a difference between the two sides, but
the final 0同ective is the same, and the co-operative action should work well for large proｭ
jects.

Fischer:
1 had sort of an interesting experience with respect to trying to separate technological
changes from how humans change, or how cognitive behaviours change. One is the technoｭ
logical change. 1 was at MIT about 10 years ago, and they had their first laser printer there,
and could print one page a minute. There was a long line because it was a great thing. Ten
years later people feel that they have to have their laser printer in their 0節目， because it's
too much work to walk down the hall. So this is sort of the speed of technological change.
Now let me say something about human change. 1 was at the IF、IP conference in 1974 in
Stockholm, and there was a panel, and the question which the panel addressed was "Will
there be a Fortran in 1980?" At the time, it would have been like these people would have
said something totally insane if they agreed that there would be a Fortran in 1980. So in
1974 these experts all agreed that there would be no Fortran in 1980. Now, having hindｭ
sight, we can make a better judgement about this. The question that 1 have derived from
that is, do your comments about future software environments relate to these two observaｭ
tions about the rapid technological change, and the slow change in how humans are willing
to give up cognitive tools which they acquire. How will that impact some of the statements
which you have made?

Balzer:
The observations you make, 1 think, are well taken. People resist a lot of change, and you
have to provide a lot of motivation to overcome that. 1 think in the case of programming
languages the case hasn't really been made. The differences among different programming
languages are small compared to the cost of learning, but more importantly, the cost of
integration. Most of the people who are still using Fortran have huge inventories of Fortran
systems that they and their colleagues have built, and they want to augment and improve
those. And a new language, which doesn't interface very well with all of that is really a
problem. A lot of things that I've been talking about are going to face the same sorts of barｭ
riers to being adopted. Again, 1 think it will be a slow process, that it necessarily is very
difficult. People have to be willing to, essentially, step outside their job in order to adopt
something new. They have to go learn how to do it , they have to begin to incorporate it ,
and that whole process and how you manage the technology integration is very tough. It

-59-

ISFSE Session 3 Seamail Vo1.5, No.10・11・ 12

seems to me that people who have found incremental ways of a110wing technology to be
introduced have a much easier time of it, and 1 haven't figured out that path yet. It takes a
lot of people experimenting and finding out how to remold things so that you can do this.
We need to lower our aspirations with respect to how fast any new idea is going to sweep.
On the other hand, let me point to the fact that the ideas of structured programming have
really been quite widely adopted, as have the ideas of object-oriented systems. Of course in
the adoption of those things, there's been a certain amount of what 1'11 call corruption, in
the sense that people mean very different things when they use these terms. But that's in
some sense a natural part of the adoption process, that people pick up some aspects of the
overa11 idea, and incorporate them and specialize them in ways that fit into the environｭ
ment.

Barstow:
There's another example of very rapid change, and that was the introduction of
spreadsheets. This is an idea that kind of just came to somebody, and it's really taken hold.
80 that 's one cause for optimism.

Balzer:
Yes and no. Yes, they were adopted very quickly, but there are actually two nos. One is
that it wasn't on the first try, that there were in fact several spreadsheet systems before
Visicalc caught on, and a large part of why it caught on was the availability of the indiviｭ
dual machines, the pcs, to make use of it. The other thing is that they weren't really used in
the way that was originally envisioned. They wound up being used for experimental purｭ
poses. People were asking "what if" type of questions, and using them in a kind of CADｭ
type of mode to get some feedback and understand the sensitivities of the models that they
were building. 80 it did happen quick, but it didn't happen in the way that the creators had
envisioned.

Fischer:
1 think that there's another part to the story, and 1 would agree with Dave that
spreadsheets have caught on much quicker, whatever measurement you take. 1 think it's
related to what was discussed a little bit yesterday about domain orientations, the immediｭ
ate recognition of the non-trivial side of the user communities that this is something useful.
There has been a growing characterization of computer science research in general that we
have kind of operated, if you compare it at a supply versus demand dimension, in sort of a
supply dimension. We have constructed tools, and then thrown them over the fence to the

-60-

ISFSE Session 3 Seamail VoL5, No.10・11・ 12

that makes use of database concepts 回 the way of envisioning, conceptualizing, and impleｭ
menting whatever kinds of software we're building. In that "Living in the Next Generation
Operating System," we described how the operating system as an application, that is if you
think of it as something that you're building, how it would use for its own purposes this
kind of advanced database that 1 w部 describing. We are pursuing how you develop a
development methodology that helps you use those database notions in whatever applicaｭ
tion you're building. To my mind, it's essentially the movement away from pointer-based
data structures to data structures that allow content addressing, associative retrieval. So
that in our specifications we do not have to create the kinds of access structures that
occupy large portions of our application programs. So we're trying to create specification
languages and implementation technology that'll allow us to use those kinds of notions. It's
good that David brought up the example of the spreadsheet, because there are two things
that made the spreadsheet so powerful. One was that everybody knew how to program
them, because they knew how to write those formulas. The other was that the system took
over the maintenance of consistency, and that's a very powerful notion, but one which we
have not really utilized in the systems that we build. That's again a large part of what sys・
tem design programmers do, is operational mechanisms for maintaining consistency. It's
very nice to be able to at least create specifications that by merely stating the constraint,
cause effects to propogate out, the way that spreadsheets propogate things，出 a way of
describing what we want to have happen. Those are the key notions, the ability to use conｭ
straints, the ability to have descriptive access to the data that's being managed, and one
more, which is to hide the difference between derived data and ground data. We all know
that those store-recompute issues are what dominate the implementation decisions that we
make in systems. We're trying to get that out of the specification. So the answer is that we
think there are some very powerful notions of how you should conceptualize a system, that
make use of database ideas 剖 a way of defining the semantics of some environment which
you want to build a performance program‘ and the performance part is something that we
want to attend to after we've got the functionality laid out,

-61-

ISFSE Session 4 Seamail Vo1.5, No.10・11・ 12

Session 4

Researcher 's P erspective
(What will it take to achieve it?)

Chair: N. Saito
(Keio U niversity)

Speakers: M. Dowson
(software design & analysis)

T. Katayama
(Tokyo Institute of Technology)

L. Williams
(Software Engineering Research)

K. Kishida
(Software Research Associates)

-63-

ISFSE Session 4

Professor Nobuo Saito
(Keio University)

Seamail Vo1.5, No.10・ 11・ 12

In his opening remarks for this session, Professor Saito set forth the thesis that in the field
of research there are two categories: the theoretical approach, and the realistic, or practical
approach. Examining first the theoretical approach, it was shown that a researcher must have a
good conceptual framework. Also, if there is a good framework it is necessary to have a good
description and construction paradigm. Professor Saito expressed the opinion that this is not a
particularly useful approach.

The realistic approach, in his view, is more useful to researchers. In this approach researchｭ
ers investigate the real world, making use of a good architecture and integration scheme. In such
an approach, the researcher must construct a real environment.

Based on these premises, Professor Saito then opened the session to the presentations from
the four panelists.

-64・

ISFSE Session 4 Seamail VoI.5, No.10・11・ 12

Mr. Mark Dowson
(so仇ware design & analysis)

Mr. Dowson gave a presentation on "Research Issues in Process Evolution." He began by
asking the question, "given the view that has been presented of project management, what
research problems must we solve?" He then proposed that explicit process definitions can be
created by a combination of the skills of the process designer and by abstracting from other proｭ
jects.

Mr. Dowson then presented a number of issues that must be dealt with if we are to guide
the improvement and refinement of project plans in the future. The first of these issues is that of
representation schemes for organizational aspects of project plans as part of process definitions.
He listed several examples of the kind of things one wants to be able to represent. The next issue
is that supposing a means of representing the above information exists, we then want a way to
derive abstract representations to infer actual process definitions which are characteristic of
actual process performance. The next issue, the opposite of abstraction, is that of reification, or
making concrete. In this sense, reification techniques are necessary to support the use of process
models as constraints on the planning process. It is also necessary to have planning approaches
and tools that support distributed, co-operative, incremental planning. The final issue raised was
that of reactive planning, where it is necessary to solve the problem of how to modify existing
plans when faced with unexpected project events.

In summary, Mr. Dowson explained that the above are problems without good solutions
which are critical to process management. We cannot, in his opinion, proceed without solving
these problems.

a 滞踏\、

PROCESS 、./』

\“一

命
〉
小
〈

子側叩話器LIc>穴;JJt
7ぷ完K G

iil 部
Future Project Management

Questions/ Answers

Balzer:
The issue 1 wanted to raise was the set of representation problems that you mentioned. To
me, it doesn't seem to be a representation issue. To me, all of those things are constraints of
one kind or another. The problem is not representation, but what do you do with the inforｭ
mation once you've represented it. That is, you want some effect of having stated that conｭ
straint, and so the question is how you, in some sense, propagate the statement of that conｭ
straint on the processing being done in the rest of the system.

-65-

ISFSE Session 4 Seamail Vo1.5, No.10・ 11・ 12

Dowson:
Well, that was what 1 called reification. Given some constraint stated as a type almost , as a
general prescription, how do you create project plans that observe that constraint? But in
order to do that , you have to know how to represent the constraint in the first place. And 1
don't know how to represent that kind of constraint. How do 1 represent a constraint like
"or培.芭gan凶llze巴 implementers into small teamsダ'門 1 don't know how to represent that 泊n a way
that can drive a tool-supported plan generation process.

Balzer:
The problem is not representing the constraint, because there are lots of languages in which
you can say that if you define a type that is "implementer team," you put a constraint on it
which says that you can't have more than three people in that set. The problem is, having
made that constraint, what other part of the system is willing to listen to that constraint
that you've imposed. The difficulty is that we have fairly narrowly focused tools that aren't
willing to take in a very large set of possible constraints we might describe. The other thing
is that you've raised the issue of trying to use existing tool sets, and that's important. But
these existing toolsets weren't built to accept the kind of constraints that you're talking
about. It may well be that we have to build new tools, or at least have to convince the
builders of those tools that they're going to be used in a different environment, and they've
got to come up with new versions of these things, so that we can make more effective use of
these tools.

Dowson:
Yes, 1 think that's right, and 1 think that in the end indeed we will have to build new proｭ
ject planning tools as part of this exercise. 1 would certainly like to be able to start without
doing that , to find incremental ways of doing that , to exploit existing tools for as long 出
possible, and get the maximum advantage out of them, before we are reluctantly forced into
building them ourselves. Perhaps 1 should have said that more explicitly, but it seems to me
to be such an obvious principle, that you don't rebuild when you can reuse, and if you can't
reuse directly, you start by adapting.

-66-

ISFSE Session 4 Seamail Vo1.5, No.10・11・ 12

J:Þ!ofess~r Takuy~ _K~ta:ram~
(Tokyo Institute � Techn61ogy)

Professor Katayama gave a presentation on "Research Topics for Future Software Environｭ
ments" with respect to software process research. He began by stating that environments can be
considered to consist of processes, an object base, tools, and a user interface. In turn, processes
consist of functions , behavior, and enaction. The two questions that he raised are those of how to
formalize/model processes, and how to prepare process scripts. He explained that at one time he
felt that attribute grammars could be used for describing processes and object bases, and he
found that he was, to some extent, correct. However, it seems that this premise is, for the most
part, incorrect.

Professor Katayama proposes three views of software processes. The first , the functional
view, looks at the influences of activities on the environment. The second, the behavioral view,
examines how activities will occur. Finally, the enactional view studies what must be done in
order to make activities occur. He then went on to examine some desirable properties for describｭ
ing software process formalisms , before taking a closer look at each of the three views of software
processes. In the course of this examination, Professor Katayama presented his theory of ill
behavior. In this theory, we ourselves are found to be the source of ill behavior, through our misｭ
takes and unreliability. He expressed the desire to build a theory that can treat computations for
formalizing ill-behaved processes.

After a look at the issue of process script preparation, which Professor Katayama feels
needs more study, he raised the question of what we should do. Briefly, he explained that we
need to learn from real processes, try to formalize difficult problems and ill-behaved processes,
and remedy the lack of description of real processes for scientific study. In conclusion, he showed
a diagram explaining how detailed processes should/ could be described, examining the balance
between environmental and human description.

Barstow:

Real

creation

Full
Automation

Environment

Knowledge Distribution

Questions/ Answers

Are there any Japanese companies doing studies of processes for real?

Katayama
1 don't know, but it seems that some companies are trying to do that. I'm not watching
companies in Japan, but my impression is that doing process studies is time consuming, and
even if a person is interested in describing processes it is not enough. In my case, 1 think a
great deal of enthusiasm is required. If a process is important and repeatedly used, 1 think
that companies will pay for this study.

-61-

ISFSE Session 4

(Dr.Lloyd Williams
Software Engineering Research)

Seam凶1 Vo1.5, No.10・11・ 12

Dr. Williams gave a presentation on Object Management and Tool Integration as research
issues for future software environments. His goal was to give an outline of a few of the currently
interesting research issues, and to give some idea of how they are being approached by some proｭ
jects. Focusing first on object management as a research issue, Dr. Williams broke this down into
the two main research topics of type systemsjinformation structures, and cooperation among
users and tools. In a closer look at type systems and information structures, he pointed out that
the current thinking is that OMSs will handle information within an environment as a collection
of typed objects. He then looked at some requirements for type systems for software environｭ
ments. He also examined several current research projects on type systems, noting that all of
them deal with some variation on the entity-relationship-attribute (ERA) model. Moving on to a
look at the topic of cooperation, Dr. Williams pointed out that in a software environment, inforｭ
mation is generally shared among a number of users andj or tools. He discussed the necessity of
preventing corruption by sﾍInultaneous writing to the same data, and looked at the traditional
way of handling this problem through transactions. Again, several current research projects in
this field were examined.

The other research issue that Dr. Williams dealt with was that of tool integration. He
pointed out that this is a complex area, which is only recently beginning to be explored. A1though
there are three major 部pects to tool integration (external, internal and orchestration), Dr. Williｭ
ams chose to focus on internal integration, where the tools in an environment share information
in a consistent manner. This kind of integration requires support in the three areas of information
formats , semantics, and information transfer. After a brief look at intermediate representations as
a possible solution to the problems of tool integration, Dr. Williams concluded with a look at
some of the current research projects on internal representations.

巨ヨ4

r 1
~~

~I Too刀

•1
~I Too刀

Tool integration without Intermediate Representation

Tool integration with Intermediate Representation

-68-

ISFSE Session 4

Mr. Kouichi Kishida
(Software Research Associates)

Seamail Vo1.5, No.10・11・ 12

Mr. Kishida gave a presentation on "Technology Transfer in Research and Construction of
Software Environments." He began with a discussion of type A and type B software as presented
by Mr. Laszlo Belady on the previous day. The main characteristic of type A software, as Mr.
Kishida pointed out, is the clear separation of user processes and development processes. In type
B software, the software, development process and the environment are all embedded in the user
process. Therefore, Mr. Kishida drew the parallel that in B software systems, the environment is
regarded as part of the organization, or corporate culture. He showed how a hierarchy of conｭ
cepts can be mapped to a corporate culture. However, the outside world is important in order to
make this organization work, as new events occur only in the outside world, while nothing new
ever happens within the corporate culture.

Mr. Kishida drew an analogy with the city-states of ancient China. He showed how it is
necessary to import new ideas from outside in order to make improvements, which corresponds to
the penetration of a new environment based upon a new process model. 1n conclusion, Mr.
Kishida presented a number of mechanisms that can be used to encourage "strangers" (people
with new ideas) to enter the corporate culture.

(Hierarchy of Concepts)

Environment as a Part of Corporate culture

-69-

ISFSE Session 4 Seamail VoL5, No.10・ 11・ 12

Balzer:

Dﾎscussﾎon

Again, the discussion session for this panel was rather long, involving a
number of foci. The discussion started by focusing on various concepts of tool
integration, as it had been brought up in several presentations. Another disｭ
cussion topic that came up several times was that of application domain
knowledge. Next, the participants examined issues related to communication
and co-ordination. The question was brought up of whether there is such a
thing as a research process, as opposed to a development process, and a
number of discussants talked about their own research process. This shifted to
a look at requirements for research. The final main topic to be discussed was
that of researchers' priorities and motivations, looking mainly at funjinterest
versus funding.

In the discussion of the integration of tools, there was mention of several kinds of integraｭ
tion, and 1 was disappointed to not find my favorite form listed among them, so 1 want to
find out why not. That form is what 1 would call "indirect." Instead of having explicit calls
between di宵'erent parts of the system, and doing integration that way, it's having the new
part, whichever part is being added on, get there by integration through the activity which
is already going on within the system, so that one identifies the activity of the existing part
that is relevant to the new part, and for me it 's "through the database." That you do
integration by describing those kinds of mechanisms, and because the activity is already
happening in the database, there is necessarily a language for describing that activity in a
formal way. 1 just want to know how come you didn't list that as one of the integration pos・
sibilities.

Williams:
1 don't think 1 meant to exclude that, and there's that whole category of things 1 called
"orchestration," and there's buried in that set of issues things that 1 just didn't have time
to talk about. Co-operation among tools in the sense that you suggested, where there may
be some existing interactions and you bring in another tool to make part of that activity or
set of interactions , would fall into that category.

Balzer:
Part of this is the question of what has been systematized, what kind of support is being
provided for integration. And 1 think that that is a very valid question to ask of your
environment, "how is it helping you to do integration?" One way of doing that integration
is to actually change the thing with which you are being int

-10・

ISFSE Session 4 Seamail VoL5, No.10・11・ 12

Saito:

integration, which it seemed to me that he was focusing on, activity integration, which links
up a bit with what Bob [Balzer] was talking about when he was talking about invocation of
tools and interaction of tools that may be implemented through the database but is not logｭ
ical to do with data, and user interface integration. We could have had a whole workshop
on tool integration, and there would be plenty to say, so 1 think it's not a fair criticism to
say that Lloyd didn't cover everything. There are clearly many other issues to do with tool
integration that need to be addressed.

In the Sigma Project they first tried to find a common data structure, but they had no
ideas about environments, so it failed.

Sayler:
I've been waiting all day for somebody to respond to Bill 'Curtis' article of a year ago,
studying 27 large projects. He said there were 3 major problems that he uncovered. The
first is the thin spread of application domain knowledge. The second is the volatility and
contradiction of requirements, and the third is communication and co-ordination breakｭ
downs. What do you see as the research objectives to answer his problems?

Dowson:
1 think that that is a good analysis of many of the problems. We often underestimate the
importance of application domain knowledge in software projects, and believe that simply
by being good software engineers or good programmers that we will succeed in building
good systems. That is obviously not the case. If there is not sufficient knowledge of the
application domain that the system is going to operate in, 1 think it is inevitable that the
system is of no use. The other problem that I'd like to address is communication and co・
ordination breakdown. Some years ago at the first software process workshop, Ari Friedman
observed that he had been studying software projects for many years, and that the single
common reason why software projects went wrong was that people did not know what they
were supposed to be doing. And if that is not a communication and co-ordination breakｭ
down, 1 don't know what is. What do we do about it? Well, we have been talking a little bit
about at least some of these issues throughout this workshop.

Katayama:
1 agree about application domain knowledge being important. We need more detailed
knowledge about domains so that we can successfully describe processes.

Williams:
1 think, like Mark [Dowson] , that a lot of these issues have been addressed already, in
maybe not qu

-11-

ISFSE Session 4 Seamail VoL5, No.10・ 11・ 12

completely embedded in the user process, then the problem of domain knowledge, the probｭ
lem of requirements, and the problem of the breakdown of communication processes are
related to some very important aspects of the software development process. 1 think that a
large part of the software development process is the communication and learning process,
both on the side of the users and the side of the developers. We must communicate with
each other, and the software developer must learn the application knowledge and the user
must learn about the computers and software development. 80, if the future software
environment is successfully embedded in the user process, a very important aspect of the
environment is the tool support for this two-way communﾏcation and two-way learning pro・

cess.

Dowson:
Just talking about communÏcation, 1 think that it would be a very great mistake to believe
that we can turn the responsibility of communication between developers and users over to
some environment, to do it all by electronic means. The environment can only supplement
and help record human communication and natural interaction, not replace it. People must
still talk to each other.

Belady:
We are analyzing and modeling and studying the development process to death. Okay, but
if there is a development process, there must also be a research process. 80, could you please
talk a litt1e bit about the research process, the process by which you perform your research
in order to have a better software development process?

W出lams:
My background is, in fact , in physics and chemistry, and so I'm very much instilled with the
experimental paradigm. 1 like empirical research. But empirical research in software
engineering is incredibly difficult to do. 80 what 1 think we end up trying to do more often
is what the biologists do, which is observe and classify, and then try to generalize from that.
My own approach is to do observation and classification and occasionally prove a theorum
when 1 have to, and to do empirical research and come up with hard data to assess what
I've done when I'm able to.

Katayama:
1 don't really like this kind of question. Thinking about my research process, 1 think it can
not be described. In my studies , 1 observe several examples and check them very carefully.
Then 1 think about it when 1 sleep, and sometimes when I'm sleeping some idea might
develop. 1 don't know why this works, but this kind of thing can't be formalized.

Belady:
I'd like to be fair and make the question simpler. My simple question is, "does research，前
development obviously does, need early rough requirements? Does it have to start with
requirements? If no, please explain why not , and if yes, please explain how that phase
works."

Dowson:
1 think that the point that Les [Belady] is raising is very important , that research, like any
activity that we do professionally, is not immune to having to have objectives, plans,
schedules, decision points about whether the funding should continue, evaluation of results,
and all those other things. 1 think we are, in this community, very bad at doing that. Can
there be requirements for research? Certainly. Those requirements will not be as precise as
the requirements for an accounting system or something that will control, say, a train. But
nonetheless, research should have clear statements of goals, and it should have statements
of when we expect to achieve those goals. If we don't achieve those goals, then we should sit
down and evaluate whether we've been doing the right thing and whether we should conｭ
tinue. It's very hard to apply that to oneself, of course.

Belady:
Where do the requirements come from?

Dowson:
The funding agency is one answer, but 1 think that there is a sense in which the world poses
certain kinds of problems. We can choose to attack these problems or not. If we choose to
attack these problems there are some implicit requirements that the problems create , and

-72-

ISFSE Sessﾎon 4 Seamail Vo1.5, No.10・11・ 12

our approach to solving them generates rather more specific requirements that we use to
drive our research. 1 think perhaps that that's the same for al1 of us. But real1y, of course,
the dominant influence is the funding agency.

Fischer:
1 think 1 believe somewhat what people like Popper have figured out in their philosophy.
Mainly, that there are problems in this world, and these problems should be addressed by
our research. Now whether funding agencies sometimes share these problems or not is, 1
think, already a different issue. For instance, the military, which has funded a lot of
research in the US does not always share my value systems, and they sometimes see very
different problems than 1 see. During this conference a number of problems were articulated
which 1 feel generate a lot of interesting requirements for research. One of them is the
retraining problem. There is somewhat this old model of education that you go to school
a.nd university until you are twenty-five, and then you are done with your learning. This
just does not hold in our world anymore, and so how to integrate working with learning 1
would define as a research problem. How we build software systems which facilitates this
process, where you can integrate working with learning, in my mind generates a number of
requirements which are very high.level and unspecific, but from there 1 would go on and
derive more detailed questions. But in my mind, what real1y drives research is the problems
which we want to solve, the problems which we face in this world.

Williams:
1 agree with Gerhard, and the things that tends to drive it is the problems. Where the
requirements come from is that because of our own interests, abilities, backgrounds, and so
on, we see aspects of those problems which we think we can address, and those lead us to,
in the sense of the classic scientific method, pose a hypothesis. We then proceed to test that
hypothesis in various ways, possibly by doing a prototype where we try to integrate a couｭ
ple of tools. 1 think that's maybe an overformalization of the way that people actual1y do
this, but the requirements come from identifying a problem, seeing a particular aspect of it
that we can address, and setting ourselves a goal for addressing it. 1 think where we, as
researchers tend to fal1 down more, is in making part of our requirements a way of evaluatｭ
ing the outcome of the research. We tend to see an interesting problem, build a prototype
system that address

-73-

ISFSE Session 4 Seamail VoL5, No.10・11・ 12

priority list and go for the high priority problems, not only the low-priority problems.
Williams:

1 agree wholeheartedly, and 1 think that as a group that is a serious problem. We just don't
have a good sense of priorities in our research agendas.

Teramoto:
My question is about the extent of the subject of research, and my question is, for example
for Mark, about the incremental planning. Y ou said, "how do we dynamically refine the proｭ
ject plan without violating the global, that is the resource or schedule, constraints?" From
the standpoint of the management view, we have observed some projects, even though they
are successfully using resources and schedule, make some trouble in the quality. This kind
of problem should be linked to satisfied quality, or satisfied the motivation of the person
who participated. But 1 think it makes the subject more complicated. But the software itself
is satisfying to the user. But 1 think such kind of approach, to take into quality, or such
kind of values is needed to select such kind of subject for even the research area. How about
that?

Dowson:

Tor�:

I'm not quite sure how to respond to that, because 1 think you were really agreeing with the
importance of the area of study. One of the things that 1 would really stress is that there
are successful, well-managed software projects. Perhaps not as many of them as there
should be, but that using some tools, perhaps quite good individual tools it is possible to
run quite a large software project quite effectively, to adapt to changing circumstances, to
do incremental and reactive planning. All the things 1 said were, to some extent, research
issues. Human beings do it quite well. But what 1 think we're trying to do is two key things.
One is to reduce the almost complete dependence on very highly skilled managers, because
there are not enough of them, and also to, by representing some of this information, provide
a path for systematic improvement of the process. And those process improvements will
include the kinds of improvements that Bob Balzer's talking about in the development pro・
cess, as well as the managerial process. Another thing that 1 would say is that issues like
resource allocation are actually very important and quite difficult.

The word "environment" has been discussed in this symposium, and 1 would like to know in
a little more detail the images of future environments. First 1 would like to ask you what is
the "environment" by your definition, and then afterwards 1 would like to know more about
the research topics in environments. And by the way, not only the discussants. This meetｭ
ing is very informal, and we have a very important chance to hear from some people who
are very famous in the AI world: Gerhard [Fischer] , David Barstow, Bob Balzer. 80, maybe
they would be kind enough to answer from their view, the AI views, what the environment
should be, especially what kind of topics should be.

Dowson:
1 think certainly the view that an environment is where you live, where you work, is entirely
correct. Part of that environment for computer professionals is the computer system that
they use as part of their work. We live in it, in part. It's not everything, but an important
part of where we work is what we get out through the keyboard and through the screen,
and 1 think our objective is to make that a more pleasant and efficient place to live and
work.

Fischer:
1 think that there was one characterization of artificial intelligence, and that was that is was
a losing discipline, in the sense that the problem was not understood. It was usually
regarded as AI. 80me progress has been made towards understanding this problem, it sort
of moved out of the AI area and got picked up by other areas. 80 in some way, leaving
exaggerated claims 剖ide ， 1 think AI has tackled very poorly understood problems, and
therefore has encountered many failures , which 1 wouldn't consider necessarily to be a negaｭ
tive attribute. But because these problems were so poorly understood, 1 think AI people
very early understood that you wanted to have a powerful environment in which you could
test your thoughts. 80 1 think that the notion of a powerful programming environment supｭ
porting you in your thinking, amplifying your thinking power, tracing out some of your
assumptions, got a lot of early attention within AI. 80 1 think that some contribution of AI

-14-

ISFSE Session 4 Seamail Vo1.5, No.10・ 11・ 12

has been the notion that an environment is very important, and that has carried over into
other domains, and now 1 think all people would agree that environments which share some
of the cognitive burden of tackling complicated problems are of crucial importance. 80 1
would say that AI tackling poorly understood, ill-structured problems has shown us some
way of tackling those, and what the role of environments can be to them.

Barstow:
I'm not quite sure how to say this, but one of the things that I've found about what I've
been doing is that I've become less and less worried about AI, and more and more worried
about software engineering. To me, AI is a set of techniques and a research program that
may produce more techniques , and the question is, how do we use those techniques as some
of the tools that we can use to build environments. And the particular technique that to me
seems most useful is the set of techniques related to knowledge representation. Primarily for
representing knowledge about the domain. If there is a thing that we should try to get from
AI, it's what are the right techniques to use for representing knowledge about the domain,
either as a kind of specification language or as a requirements language or something like
that. And that's where we are likely to find some good tools. There may be a secondary
area that might be in representing knowledge about design decisions. How do you represent
the fact that a decision has been made, or what the reasoning was behind that decision?
But those are the two a目前 that to me seem like they could benefit the most from AI techｭ
mques.

Audience:
1 need advice. 1 think software environments, presently and before, are only for development
engineers and software engineers. But in the near future , everybody will have to make proｭ
grams, 1 think. For example, reception ladies and drivers. Everybody will have to make proｭ
grams, 1 think. 80 1 think that software environments will have to be not only just at the
engineers level, but at many kinds of levels. 1 think we will have to supply environments,
like cutting baumkuchen [a kind of cookie cut with concentric rings, like the trunk of a tree].
What do you think about such thoughts?

Williams:
I'm not sure that 1 agree that everyone will eventually become a programmer. On the other
hand, 1 think it w出 David [Barstow] that first mentioned spreadsheets as a vehicle for peo・
ple who are not necessarily professional programmers to create programs within a fairly narｭ
row application domain. And 1 think that's a very useful way to proceed. Gerhard [Fischer]
is working on construction tool kits, which 1 think will maybe show the direction of the next
generation of spreadsheet-like software. My own feeling is that 江 Gerhard's work is successｭ
ful, that software engineers will become more concerned with constructing the tool kits
themselves, and less concerned with constructing the end applications.

Fischer:
1 would add to this that software engineers, for the reasons we've discussed, namely that
there's a thin spread of application knowledge, are not well equipped to do the second part,
to build the end application. At least, definitely not by themselves.

Kishida
1 think that the environment is a kind of device for some organizations or companies to do
their business. 80 in other words, 1 think the environment is the implementation or
representation of their view of their own business or process. 80 the environment is the
representation of their own process model.

Katayama:
1 am a little surprised to hear that thought, because 1 think our professionalism has to be
established at that time, and 1 think that the environments should be for professionals. Proｭ
fessional environments should be for professionals, and 1 don't like to imagine that every
person is a professional.

Belady:
Earlier we talked about the research process, not the research content of this panel, and the
panel members from earlier today. 1 don't know whether it is only my perception, but it
seems to me that most of this research content w田 related to the environment , and its
modeling and management, and the process itself. Almost all of the speakers talked about

-75-

ISFSE Session 4 Seamail VoL5, No.10・ 11・ 12

research problems related to the process which takes place in this environment. Is this a
correct assumption?

Wi11iams:
In terms of the things that 1 was discussing, 1 would categorize them less as process,
although they certainly support the process. But in fact the way we've structured the SDA
project there is a process aspect, an object management aspect, analysis 酪pect and so on.
But the way that 1 would categorize niy own work is in parts of the environment that deal
with managing the objects, the structural aspects of the objects, not necessarily the
software process aspects, although there is support for that.

Belady:
My impression was, and that's nothing negative, that it was mostly that which falls into the
category of process programming, this new buzzword. You're not mentioning it, but express
it in different ways. Let's assume that this is the c剖e. What we call environments, software
development environments, 1 remember we used to call differently, and that was about
15-16 year ago. We called them "software development support systems." There were early
efforts in this area, and it was a set of tools, and methods and so on. But then it was too
early, so it did not succeed too much. Then 1 went to the sunken laboratory of Schlumｭ
berger around 1980. This was the very first time 1 heard this word in this context. It took
me a while to absorb it. "Environment." 1 said, "What is this environment?" 1 immediately
disliked this word, and 1 hoped, honestly, that it would disappear. Instead of disappearing,
it became a household word. But to me it sti11 means the "software development support
system," which is giving software engineers individually, and now in groups, support for
their activities by some machine.

Kishida:
1 think the words "software development support system" represents some very square view
of the world. 1 heard the word "environment" for the first time when 1 talked with some
UNIX related people in the United States in the late 1970s. For me the impression is that
the word "environment" is a loose thing, shows some loose view of the world.

Belady:
Maybe. 1 gave up on hating that word. But talking about the research content, at least my
perception of it, the following occurred to me. Where technology transfer was mentioned,
the best way to have technology transfer is that people move and transfer the technology.
Another thing was that small teams, and that w酪 Bob [Balzer] who mentioned it, work
better than larg

-16-

可

ISFSE Session 4 Seamail Vo1.5, No.10・11・ 12

strangled by bureaucracy, and it 's achieving some appropriate balance by some kind of conｭ
strained co-operation that is clearly important.

Balzer:
1 wanted to go back to the comment about where we really should be heading, and why
we're doing all this stuff. It seems to me that the question that came up by John about the
relevance of the Bill Curtis triage of questions, the one that seems to me is the most comｭ
pelling is this question of the thin spread of application knowledge. That's not one that is
about to go away. It's going to be with us always, and what we need is some way of capturｭ
ing what people do know, so that we get more power out of it. The comment came up
before about, essentially, end-user programming, and can we build environments that supｭ
port that. And 1 think the answer is "no." But what we can do, perhaps, that solves both
those needs, is end-user modification, where we use the scarce resource of the people who do
have the application knowledge in a deep way, to build an architecture that's domain
specific, that captures a lot of that knowledge, and then have more people do adaptations of
that, because it is much easier to modify once you've got a base template that you can see
and make comments in terms of. So the idea of using the scarce resource to create the archiｭ
tecture and then let end-users do adaptation of that is, it seems to me, a very powerful
notion, and one which captures a lot of the kinds of research issues that have been
addressed here. That in order to make that successful, there's an awful lot of technology
that has to be put in there that has to do with how you architect those systems, how you
leave them open for later modification, in what form you capture the information about
both the domain and the computer optimization of those systems, and how the people who
are going to be doing that modification, that is the end-users, interact with such a system
to cause those modifications to occur. So it seems to me that this is one of the grandest
challenges that we as a community really have to face.

Williams:
Something in what you said, I'm not sure whether we agree or disagree, so let me try and
rephrase it. You said "create architectures within a domain and then allow users to modify
them." And the way that 1 would phrase that is that "architectures within an application
domain are a mapping of some end-application specific knowledge onto some implementaｭ
tion specific knowledge." It seems to me that there is a mis

Barstow:
1 just want to make a quick observation, and that's that if one looks at software economics
models, most of the cost of a piece of software in its lifetime is spent during maintenance
and evolution, and yet most of the presentations here have implicitly been looking at
development, rather than maintenance and evolution. There were a couple that mentioned
the word "maintenance" and a couple that talked about the relationship, but 1 wonder why

-77-

ISFSE Session 4 Seamail Vo1.5, No.10・ 11・ 12

Saito:

that is, and one 阿部on that might be why so few explicitly talked about rnaintenance is a
perception that the focus should be on developrnent. And another reason rnight be that
there's a theory that says that if we can capture developrnent and understand that , that
whatever is done there, whatever knowledge we end up representing or whatever representaｭ
tions we have, will then carry over to support rnaintenance. It's just an observation, and 1
was curious about why things turned out that way.

Before ending the session, I'd like to add another research topic as the chairrnan's right. 1
attended the second international workshop for Systern Configuration Managernent held last
October near Princeton University, and version control is not exciting topic, but it's a very
fundarnental background technology. Version control is rnuch related to product and other
discussion is rnuch rnore oriented towards process, but we need to consider rnore about the
product itself. Maybe version control is included in the object rnanagernent research, but it's
a very irnportant technology to support the software developrnent of software environrnent.

-78-

7th INTERNATIONAL SOFT羽TARE PROCESS 羽TORKSHOP

Communication ancl Coordination in the Software Process

16-18 October 1991 , San Fr.ancisco Bay area

(5ponsored by the Rocl.:y M ountain Instit!山 of 50.βware Engineering ・
cooper，日 tioη requested from Japanese, European and U5 professional societies)

Organizing Committee

Dennis Heimbigner Karen HutT Maria Penedo
Wilhelm Schaefer Tetsuo Tamai Ian Thomas

The 7th International Software Process Workshop will focus on communication and coordination 出pects of the

software process and related issues. A software development process typically involves many individuals , often fulｭ
filling many roles , many sites , often geographically distributed , and many sub-processes. Sub-processes may be

described in differing process description techniques adapted to their specific domain , and implemented by differing
and distributed tools and automated support mechanisms. The workshop will focus on communication , coordination
and interaction of process technology, process descriptions and their supporting automated mechanisms. Some of
the issues are 回 folIows :

恥1ultiple process description techniques.

Different process description techniques may be appropriate for disもinct parts of the process thus requiring welIｭ
defined interfaces and support for inter-operability.

-which process description paradigms are appropriate for what aspects of the process?

-can we characterize commonality across different paradigms?

-how are process descriptions at the levels of thc enterprise, project, team , and individual related?
-how appropriate are process descriptions paradigms for interface de抗nition and interoperability within and across paradigms?

Communication, composition, and infOl'mation flow.

P rocess desc句tions (possibly desc山ed/implemented in di民rent paradigms) need もo communicate , to manage in・
formation flow in the process and to be combined inもo larger process descriptions.

-how is information flow modeled in process description techniques?

-how do enactable processes (possibly usi時 diffcrent description/implementation) techniques communicate with each other?

-how are sub-processes composed into larger process fragments ?

-how C/O communication techniques support the “small-scale" versus the “large-scale" aspects of processes?
-what impact do those capabilities have on the underlying information management systems of process-centered environ-

ments?

Design and implementation of process-centered environments.

Environments are increasingly providing automated support for the life-cycle process.

-what are the consequences of geographical distribution of projects on the design of supporting process enactment platforms?

-what empirical evidence exists on the adaptability of users to a process-<:entered environment?

-what are the likely effects of process-centered environments on SEE and tool architectures?

The three day workshop , which will be held in the San Francisco Bay area, will consist of intensive discussion
of these issues by at most 35 participants. Prospective participants should submit a maximum three page position

paper in English by 1 March 1991 , explicitly addressing one of the workshop issues and suitable for publication in
the proceedings. A small number of participants will be requested to prepare short keynote presentations to initiate

discussion. Papers (6 copies or electronic mail) shoud be sent to:

Ian Thomas

IIewlett♂ackard ， Software Engineering Systems Division

1266 Kifer Road , Sunnyvale, California 94086 , USA.
emaiJ: ispw7@hp-ses.sde.hp.com

El巴ct l"O nic mail submissions shollld be in Ascii; Latcx form is acceptable. They should include author's fulI address
騁nd telephon巴 number

Call for Papers

1 st International Conference on the
Software Process

21 -22 October 1991 , Los Angeles, California, USA
$ponsored by 的e Rocky Mountain Institute of $0斤ware Eng的eering (rMise)

Cooperation being sought from Asian, European and U$ Professional $ocieties

Bob Balzer

Jean Claude Derniame
Gail Kaiser

Manny Lehman
Dewayne perry

Wilhelm Schaefer

program Commlttee

Bill Curtis
Mark Dowson (chair)

Takuya Katayama

Lee Oste附eil
Bill Riddle
Koji Torii

Gerhard Chroust
Watts Humphrey

Kouichi Kishida

Maria Penedo

Win Royce
Colin Tully

The software industry manufactures (and maintains and evolves) large, complex artifacts -software systems.
We would like its products to be of high quality and reasonable cost, and to be delivered on time and within
budget. One important way to achieve these objectives is to improve the manufacturing process -the software
process. A software process is a set of steps for creating and evolving software systems that encompasses
both technical and managerial concems. In pa同icular， it must address technical development, project
management, data and ∞nfiguration management, and quality assurance and control throughout the
software life cycle.

Historically, the software engineering community has foαJsed on the products of software processes. Recent
advances in the understanding of these processes, focusing on the activities involved in creating software
products, pres~nt an opportunity to solve many of the problems underlying software creation and evolution.

This conference will address the description, enaction, and automation of software process activities, covering
a wide range of topics including:

• software process models and modeling methods

• software process measurement, assessment , and improvement

・ process description formalisms and languages

• process-centered software development environments and tools
・ empirical studies of the software process

• descriptions of proposed or actual software processes.

The conference, which will be the first of a continuing series, will present ongoing work on the a凶veandother
software process-related topics through a single track of sessions which will include invited presentations,
refereed papers, experience repo同s ， and panel sessions.

High quality original papers not submitted elsewhere , short experience repo吋s ， and panel proposals
addressing the a回ve topics should be submitted by 1 Apri11991. Pape隠 should be limited to 6000 words.
Experience repo巾 shoulddescribe praCtical experience with software process-related approaches, and be
limited to 2000 words. Panel proposals should describe the topic to be addressed and identify the prospective
panelists. Five copies of submissions should be sent to:

ICSP1
rMise

PO Box 3521 , Boulder, CO 80303, USA
Tel: +1 (303) 499 4782

Electronic mail submissions (plain text or postscript only) may be sent to:

icsp1@sda.com

AII submissions should indicate the full postal address, tele

ソフトウェア技術者協会 (SEA) 入会のおすすめ

ソフトウェア技術者也会 (SEA) は，ソフトウェアハウス，コンビュータメーカ，計算センタ，エンドユーザ，大学，研究

所など，それぞれ異なった環境に置かれているソフトウェア技術者または研究者が，そうした社会組織の壁を越えて，各自の

経験や技術を自由に交涜しあうための「場」として. 1985 年 u 月に設立されました.

その主な活動は.後関誌SE.AMA止の発行，支部および研究分科会の運営，セミナー/ワークショップ/シンポジウムな

どのイベントの開催.および内外の関係諸国体との交涜です.発足当初約 2∞人にすぎなかった会員数もその後飛躍的に噌

加し現在，北は北海道から南は沖縄まで. 19∞名近くのメンバーを擁するにいたりました.法人賛助会員も約 l∞社を数

えます.支部は，東京以外に，関西，横浜，長野，名古屋，九州の各地区で設立されており，その他の地主携でも設立準備をし

ています.分科会は，東京.関西.名古屋で，それぞれいくつかが活動しており，その他の支部でも，月例会やフォーラムが

定期的に開催されています.

「現在のソフトウェア界における最大の課題は，技術移転の促進である」といわれています.これまでわが国には，そのた

めの適切な社会的メカニズムが欠けていたように思われます.立Aは，そうした欠落を補うべく，これからますます活発な

活動を展開して行きたいと考えています.いままで日本にはなかったこの新しいプロフェッショナル-ソサイエティの発展

のために，ぜひとも ， あなたのお力を貸してください.

個人正会員の入会金は 3 ，α)() 円，年会費は 7，α)() 円(入会時の払込は合計 10，α氾円)です.法人賛助会員は，年会費 1 口

50 ，α)() 円てす(入会金はなし) . 会員には，毎月機関誌 (A4 判約 30 ページ)が配布されます.また各種のイベントには，す

べて会員価格て参加できます(法人賛助会員会社の社員は，会員級いとなります).

入会ご希望の方は，下記の申込書に必要事項をご記入の上，郵便または FAX で，事務局までお送り下さい.折り返し，会

則，機関誌最新号，会費振込用紙などをお送りします.

申し込み先

〒 1ω 東京都新宿区四谷 3 ・ 12 丸正ビル5Fソフトウェア技術者協会

τEL03 ・ 3356 ・ 1077 ， FAX 03 ・ 3356 ・ 1072

SEA入会申込書(正会員) 91・01

氏名--------(.ふりがな:

年令一一才性別(:男女)血液型 (AOBAB)

勤務先名:

所属 ・役峨:

動務先住所: (〒)

勤務先1EL: 一一一一一.一一一一一一.一一一一(内線一一一一一)

勤務先 FAX: 一一一一一.一一一一一一.一一一一一
自宅住所: (〒

自宅1EL: 一一一一一.一一一一一一.一一一一一
連絡先(どちらかにチェック) 口勤務先口自宅

立A入会申込書(賛助会員) 91・01

会社・団体名:

代表者氏名: (ふりがな:

連絡担当者: (ふりがな:

所属 ・役臓:

住所: (〒

τEL: 一一一一一 (内縁一一一一一) FAX:

申込口数:一一一一一一口

sea
ソフトウェア技術者協会

	1990_10-12_001
	1990_10-12_002
	1990_10-12_003
	1990_10-12_004
	1990_10-12_005
	1990_10-12_006
	1990_10-12_007
	1990_10-12_008
	1990_10-12_009
	1990_10-12_010
	1990_10-12_011
	1990_10-12_012
	1990_10-12_013
	1990_10-12_014
	1990_10-12_015
	1990_10-12_016
	1990_10-12_017
	1990_10-12_018
	1990_10-12_019
	1990_10-12_020
	1990_10-12_021
	1990_10-12_022
	1990_10-12_023
	1990_10-12_024
	1990_10-12_025
	1990_10-12_026
	1990_10-12_027
	1990_10-12_028
	1990_10-12_029
	1990_10-12_030
	1990_10-12_031
	1990_10-12_032
	1990_10-12_033
	1990_10-12_034
	1990_10-12_035
	1990_10-12_036
	1990_10-12_037
	1990_10-12_038
	1990_10-12_039
	1990_10-12_040
	1990_10-12_041
	1990_10-12_042
	1990_10-12_043
	1990_10-12_044
	1990_10-12_045
	1990_10-12_046
	1990_10-12_047
	1990_10-12_048
	1990_10-12_049
	1990_10-12_050
	1990_10-12_051
	1990_10-12_052
	1990_10-12_053
	1990_10-12_054
	1990_10-12_055
	1990_10-12_056
	1990_10-12_057
	1990_10-12_058
	1990_10-12_059
	1990_10-12_060
	1990_10-12_061
	1990_10-12_062
	1990_10-12_063
	1990_10-12_064
	1990_10-12_065
	1990_10-12_066
	1990_10-12_067
	1990_10-12_068
	1990_10-12_069
	1990_10-12_070
	1990_10-12_071
	1990_10-12_072
	1990_10-12_073
	1990_10-12_074
	1990_10-12_075
	1990_10-12_076
	1990_10-12_077
	1990_10-12_078
	1990_10-12_079
	1990_10-12_080
	1990_10-12_081
	1990_10-12_082

