
A Novel Approach to Unit Testing: The Aspect-Oriented

Way
 Guoqing Xu and Zongyuan Yang

Software Engineering Lab, Department of Computer Science
 East China Normal University

 3663, North Zhongshan Rd., Shanghai 200062, P.R. China
 {gqxu_02,yzyuan}@cs.ecnu.edu.cn

ABSTRACT

Unit testing is a methodology for testing small parts of an
application independently of whatever application uses them.
It is time consuming and tedious to write unit tests, and it is
especially difficult to write unit tests that model the pattern
of usage of the application they will be used in.
Aspect-Oriented Programming (AOP) addresses the
problem of separation of concerns in programs which is well
suited to unit test problems. On the other hand, unit tests
should be made from different concerns in the application
instead of just from functional assertions of correctness or
error. In this paper, we firstly present a new concept,
application-specific Aspects, which mean top-level aspects
picked up from generic low-level aspects in AOP for specific
use. It can be viewed as the separation of concerns on
applications of generic low-level aspects. Second, this paper
describes an Aspect-Oriented Test Description Language
(AOTDL) and techniques to build top-level aspects for
testing on generic aspects. Third, we generate JUnit unit
testing framework and test oracles from AspectJ programs
by integrating our tool with AspectJ and JUnit. Finally, we
use runtime exceptions thrown by testing aspects to decide
whether methods work well.

KEYWORDS

Aspect-Oriented Programming, Unit Test, Aspect-Oriented
Test Description Language

1．INTRODUCTION

There is a growing interest in applying program testing to the
development process, as reflected by the Extreme
Programming (XP) approach [1]. In XP, unit tests are viewed

as an integral part of programming. Tests are created before,
during, and after the code is written — often emphasized as
“code a little, test a little, code a little, and test a little ...” [2].
The philosophy behind this is to use regression tests [3] as a
practical means of supporting refactoring.

A unit test suite comprises a set of test cases. A test case
consists of a test input and a test oracle, which is used to
check the correctness of the test result. Developers usually
need to manually generate the test cases based on written or,
more often, unwritten requirements. Some commercial tools
for Java unit testing, such as ParaSoft’s Jtest [4], attempt to
fill the gaps not covered by any manually generated unit tests.
These tools can automatically generate a large number of
unit test inputs to exercise the program. However, no test
oracles are produced for these automatically generated test
inputs unless developers do some additional work: in
particular, they need to write some formal specifications,
runtime assertions [5] or more practically, make program
invariants generated dynamically with a certain tool like
Daikon [6] and use these invariants to improve the test suites
generation [7, 8]. However, with the current formal
assertions, it is very difficult to generate tests that can model
some non-functional features of the program, e.g. the
performance of the program and temporal logic of methods’
execution.

Aspect-Oriented Programming (AOP) addresses the
problem of separation of concerns in programs [9, 10, 11,
12]. Since in AOP, the crosscutting properties are monitored
to reflect the program from different aspects, a lot of tasks
which have been difficult to be handled in traditional ways

 AOTDL

 translate Java

 AspectJ

 Generate

 Weave and
 Compile
 Test Case Supply

 Run the test

Fig.1. An Overview of the basic technique

Testing
Aspects

Aspects in
AspectJ

Jaout/
Tranlator

Java
programs

Bytecode
files

Junit test
classes

Jaout/
Generator JMLAuto-

Test

Junit test
runner

Test
Results

Arj

are easily done. For example, the performance and methods’
execution order problems have been well solved in AOP.
Therefore, using a crosscutting property of the program as
the criterion to check the correctness of the application in the
corresponding aspect is well suited to the unit testing
problems.

However, currently in AOP, programmers build generic
aspects to monitor certain crosscutting properties for a wide
variety of uses including program tracing, rum time assertion
checking and etc. This makes it difficult for testers to
identify them and make those for testing as test oracles.
Therefore, how to build specific testing aspects which can be
identified as test oracles becomes the key problem in making
the aspect-oriented unit testing practical.

We attempt to solve this problem by collecting those aspects
in AOP for the same use into application-related top-level
aspects. We call these aspects the application-specific
aspects. For example, aspects for tracing can be collected
and made into Tracing Aspects, aspects for pre and post
condition assertions are to be built as Assertion Aspects and
etc. Building application-specific aspects can be viewed as
the separation of concerns on applications of generic aspects.
A kind of application-specific aspects share some common
features. In this way, we can build Testing Aspects which

will send runtime messages which can be received by unit
test programs and identified as test oracles.

Fig.1 illustrates the basic technique used in our approach to
generating the unit test. The testing aspects described by
Aspect-Oriented Test Description Language (AOTDL) can
be translated by our tool JAOUT/translator as low-level
aspects in AspectJ. Then after weaved with Java programs,
the aspects are compiled to bytecode files (class files). The
tool JAOUT/generator generates the corresponding JUnit
test classes from the program to be tested. These test codes
can serve as test oracles. Finally, fed with the test inputs
generated automatically by JMLAutoTest [14], the unit test
is run and the results are judged by the runtime exceptions
thrown from the testing aspects we made.

The rest of this paper is organized as follows: section 2
briefly introduces the basic concepts in AspectJ and section 3
describes how to build testing aspects with AOTDL. We
present the generation of test oracle and test cases in detail in
section4. After section 5 describes the related work, we
conclude our approach and describe the future work in
section 6.

2．AspectJ

In this paper, we use AspectJ as our target language to show

Class Stack{

 public void init(){...}

 public void push(Node n){...}

 ...

}

Aspect TempLogic{

 protected boolean isInitialized = false;

 //method push is called
 pointcut pushReached(Stack st):

target(st)&&call(void

Stack.push(Node));

 //method init is called
 pointcut initReached(Stack st):

target(st)&&call(void

Stack.init(void));

 //advice after init is called
 after(Stack st):initReached(st){

 isInitialized = true;

}

 //advice before push is called
before(Stack st)

throws NotInitializedException:

 pushReached(st){

 if(!isInitialized)

throw new NotInitializedException();

}

}

Fig. 2. An Aspect providing advices for the temporal
logic of methods execution in Stack

the basic idea of aspect-oriented unit testing. AspectJ [13] is
a seamless aspect-oriented extension to Java. AspectJ adds
some new concepts and associated constructs are called join
points, pointcuts, advice, and aspect. The join point is an
essential element in the design of any aspect-oriented
programming language since join points are the common
frame of reference that defines the structure of crosscutting
concerns. The join points in AspectJ are well-defined points
in the execution of a program. A pointcut is a set of joint
points that optionally exposes some of the values in the
execution of these joint points. AspectJ defines several
primitive pointcut designators can be defined according to
these combinations.

Advice is a method-like mechanism used to define certain
codes that is executed when a point cut is reached. There are
three types of advice, that is, before, after and around. In
addition, there are two special cases of after advice, after
returning and after throwing, corresponding to the two ways
a sub-computation can return through a join point. Aspects

are modular units of crosscutting implementation. Aspects
are defined by aspect declarations, which have a similar form
of class declarations. Aspect declarations, as well as other
declarations such as method declarations, that are permitted
in class declarations.

An AspectJ program is composed of two parts: (1)
non-aspect code which includes some classes, interfaces, and
other language constructs as in Java, (2) aspect code which
includes aspects for modeling crosscutting concerns in the
program. Moreover, any implementation of AspectJ is to
ensure that aspect and non-aspect code run together in a
property coordination fashion. Such a progress is called
aspect weaving and involves making sure that applicable
advice runs at the appropriate join points. Fig.2 illustrates a
sample aspect which provides advices for the methods
execution order in the class Stack. The advices defined in this
aspect require that the push method can not be executed if the
init method is not called.
3. BUILDING TESTING ASPECTS

In this section, we present how to build the
application-specific aspects for testing with AOTDL.
Prepare your submissions on a typesetter or word processor.

3.1 AOTDL

AOTDL explicitly specifies the advices for the criteria of
meaningless test cases and test errors. Fig.3 illustrates the
AOTDL representation of the TempLogic aspect which we
have mentioned above. The major differences between two
representations in Fig.2 and 3 lie with the fact that the aspect
in Fig.2 is a low-level AspectJ aspect which can be of any
uses, e.g. tracing, asserting, logging and whatever. But the
aspect in Fig.3 is the application-specific aspect which is
specifically built for testing. It can be viewed as the
separation of concerns on applications of generic aspects.
The Meaningless and Error units contain the advices for
criteria of meaningless test cases and test errors respectively.
We use the syntax as follows:
advicetype(arguments): pointcuts: conditions: message
conditions is a boolean expression which means the
conditions in which the current test case is meaningless or
the current test fails. The message means the printed message

TestingAspect TempLogic{
 // all pointcuts and other utility advices are
declared
 // in the Utility unit
 Utility{
 protected boolean isInitialized = false;
 //push is reached
 pointcut pushReached(Stack st):

target(st)&&call(void
Stack.push(Integer));
 //init is reached
 pointcut initReached(Stack st):

target(st)&&call(void Stack.init(void));
 after(Stack st):initReached(st){
 isInitialized = true;
 }
}

 MeaninglessCase Advice{
//advices for specifying criteria of
//meaningless test cases

 before(Stack s):
pushReached(s):

s.getSize()>=MAX:”Overflow”;
...

}
 Error Advice{
 //advices for specifying criteria of test
//errors

 before(Stack s):
 pushReached(s):

!isInitialized:”Not Initialized”;
 ...
}
}

Fig.3. The AOTDL representation of the TempLogic Aspect
when the conditions happen. To enhance the expressiveness
of conditions clause, AOTDL supports most kinds of
boolean expressions used in formal languages predicts [15]
including forall, exist, function calls returning boolean
values and etc. And we are still working on supporting more
expressions to make the language convenient and expressive
enough for testers. The declarations of pointcuts, fields and
all the other advices which do not directly affect the criteria
of what is a meaningless case and what is a failed test are put
into the Utility unit.

Although the syntax of AOTDL seems simple, it bridges the
gap between abstract application-specific aspects of the
program and detailed language level aspects in AOP, and
hence can be viewed to help the separation of concerns on
applications of generic aspects in AOP. This idea can also be
used in making other application-related tools to extract
top-level application aspects from the generic aspects.

public Aspect TempLogic{

 // Definitions in Utility unit are not changed
protected boolean isInitialized = false;
//push is reached

 pointcut pushReached(Stack st):
target(st)&&call(void Stack.push(Integer));
//init is reached

 pointcut initReached(Stack st):
target(st)&&call(void Stack.init(void));

 after(Stack st):initReached(st){
 isInitialized = true;
 }
 //meaningless advices
 before(Stack s)

throws MeaninglessTestInputException:

pushReached(s){
if(s.getSize()>=MAX){
MeaninglessTestInputException ex= new
MeaninglessTestInputException(“overflow”);

 ex.setSource(“TempLogic”);
 }
 }

 //error advices

 before(Stack s)throws TestErrorException:
 pushReached(s){

if(!isInitialized){
 TestErrorException ex =new

TestErrorException(“Not Initialized”);
 ex.setSource(“TempLogic”);

}
}

}

 Fig.4. The Translation of TempLogic Testing Aspect

3.2 Translation of Testing Aspects

JAOUT/translator is made to translate the testing aspects
represented by AOTDL into generic aspects in AspectJ. The
translation of TempLogic testing aspect shown in Fig.3 is
illustrated in Fig.4. Definitions in Utility unit are not
changed since they do not affect test oracles. The advices
defined in meaningless and error advice unit throw a
MeaninglessTestCaseException and TestErrorException
respectively when the specified conditions are reached.

Now we make clear that AOTDL is the extension of AspectJ
in making application-specific aspects for testing. Our
translator also supports the mixture of the testing aspect
specified by AOTDL and generic aspects in AspectJ. After
translated by JAOUT/translator and then weaved with the
Stack program and compiled by arj, the corresponding byte
codes (.class) files are generated.

4. TEST ORACLES AND TEST CASES GENERATION

This section presents the details of our approach to
automatically generating a JUnit test class from a Java class
weaved with aspects. We firstly describe how test outcomes
are determined. Then we describe the protocol and
techniques for the user to supply test data to generated test
oracles. Finally, we discuss the automatic generation of test
methods and test classes.
4.1 Determining test outcomes

The outcome of a call to M for a given test case is determined
by whether translated testing aspects throw exceptions
during M’s execution, and what kind of exception is thrown.
If no exception is thrown, then the test case succeeds
(assuming the call returns), because there was no
meaningless case/error found, and hence the call must have
satisfied specifications defined in testing aspects.

Similarly, if the call to M for a given test case throws an
exception that is not an MeaninglessTestInput or TestError
exception, then this also indicates that the call to M
succeeded for this test case since they are thrown by other
aspects or the method itself, but not testing aspects. Hence if
the call to M throws such an exception instead of a
meaningless or error exception, then the call must have
satisfied specifications of testing aspects. With JUnit, such
exceptions must, however, be caught by the test method
testM, since any such exceptions are interpreted by the
framework as signaling test failure. Hence, the testM method
must catch and ignore all exceptions that are not meaningless
and error exceptions.

If the call to M for a test case throws a TestError exception,
then the method M is considered to fail that test case. If a
MeaninglessTestInput exception is caught, the current test
case is considered as a meaningless test case and therefore, is
ignored.
4.2 Supplying Test Cases

Given a Java class M.java, JAOUT/Generator generates
three classes: M_Aspect_Test, M_Aspect_TestCase and
M_Aspect_TestClient. M_Aspect_Test is a JUnit test class to
test all methods in class M. M_Aspect_TestCase is a test case
provider, which extends M_Aspect_Test and initialize test

public void testM() {
final A1[] a1 = vA1;
: : :

final An[] an = vAn;
 for (int i0 = 0; i0 < receivers.length;

i0++)
 for (int i1 = 0; i1 < a1.length; i1++)
 : : :
 for (int in = 0; in < an.length; in++)

{
 if (receivers[i0] != null) {
 try {
 receivers[i0].M(a1[i1],

..., an[in]);
 }
 catch

(MeaninglessTestInputException e)
{
/* ... tell framework the test case
was meaningless ... */
result.meaninglesscases++;
continue;

}
 /* ... tell framework the current

test fails*/
catch (TestErrorException e) {

 String msg =
"In testing aspect "+

e.getSource()+":"
+e.getMessage();

system.err.println(msg);

 result.errors++;
}
catch (java.lang.Throwable e) {

 // success for this test case
continue;

}
finally {

setUp(); // restore test cases
}

} else {
/* ... tell framework test case

was meaningless, since the test
cases are not initialized ... */

}
 ...
}

}
}
Fig.5. The test method for the corresponding method M

fixture. M_Aspect_TestClient is the test client in which test
cases can be generated automatically by JMLAutoTest [14]
tools.
4.2 Test Methods

There will be a separate test method, testM for each target
instance method (non-static), M, to be tested. The purpose of
testM is to determine the outcome of calling M with each test
case and to give an informative message if the test execution

fails for that test case. The method testM accomplishes this
by invoking M with each test case and indicating test failure
when the testing aspects throw a TestError exception. Test
methods also note if test cases were rejected as meaningless
when a MeaninglessTestInput exception was caught.

What Fig.5 illustrates is the test method for the method M.
The differences between this method and the test method in
Jmlunit [5] framework are that the
MeaninglessTestInputException and
TestErrorInputException are replaced for the
PreconditionEntryError and PostconditionError and the
exceptions used in our testing framework are thrown by
Testing Aspects instead of a runtime assertion checker.
Since patterns difficult to be modeled with traditional formal
specifications are well treated as recognized as crosscutting
properties in aspects, our approach may be adapted in more
situations than a testing framework based on formal
specifications exemplified by Jmlunit.

5. CONCLUSIONS

Automatically generating unit tests is an important approach
to making unit test practical. However, existing
specification-based tests generation methods can only test
the program behavior specified by invariants. Since the
program invariants only focus on functional behaviors,
patterns related to non-functional properties of the program
can not be modeled, and therefore, existing
specification-based test generation can not test these special
aspects of the program.

In the paper, we take a different perspective and present an
approach to generating the unit testing framework and test
oracles from aspects in AOP. First, we describe a new
concept, application-specific aspect, which means the
top-level aspect picked up from generic aspects in AOP. This
can be viewed as the separation of concerns on specific
application of common AOP’s aspects. Then we discuss an
Aspect-Oriented Test Description Language (AOTDL) to
build the application-specific aspects for testing, namely
testing aspects. AOTDL explicitly specifies the properties
for testing which can be translated into the common aspects

in AspectJ. After weaving and compiling programs, we
automatically generate the unit testing codes which can serve
as test oracles. Finally, test outcomes are decided on different
exceptions thrown by testing aspects. Since we integrate our
tool with JMLAutoTest, testers can make the test cases
generated automatically and use the double-phase testing
way to filter out the meaningless test cases.

REFERENCES
1. Beck K., Extreme Programming Explained. Addison-Wesley,
2000.
2. Beck K. and Gamma E., Test infected: Programmers love writing
tests. Java Report, 3(7), July 1998.
3. Korel B. and Al-Yami A. M., Automated regression test
generation. In Proc of ISSTA 98, Clearwater Beach, FL, pages
143–152. IEEE Computer Society, 1998.
4. Parasoft Corporation, Jtest manuals version 4.5,
http://www.parasoft.com/, October 23, 2002.
5. Cheon Y. and Leavens G. T., A simple and practical approach to
unit testing: The JML and JUnit way, In Proc of 16th European
Conference Object-Oriented Programming (ECOOP02), pp.
231-255., 2002.
6. Ernst, M. D., Cockrell, J., Griswold, W. G., Notkin, D.
Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software Engineering,
vol. 27, no. 2, Feb. (2001) 1-25
7. Xie T. and Notkin D., Tool-Assisted Unit Test Selection Based
on Operational Violations, In Proc of 18th IEEE International
Conference on Automated Software Engineering (ASE’03),
Montreal, Canada, Oct. 2003.
8. Xie T. and Notkin D., Mutually Enhancing Test Generation and
Specification Inference. In Proc of 3th International Workshop on
Formal Approaches to Testing of Software (FATES’03), Montreal,
Canada, Oct. 2003.
9. Bergmans L. and Aksit M, composing crosscutting concerns
using composition filters, Communications of the ACM, Vol.44,
No.10, pp.51-57, Oct.2001.
10. Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C.,
Loingtier J.-M., and Irwin J.. Aspect-oriented programming. In
Proc. ECOOP'97, LNCS vol. 1241, Springer-Verlag, 1997.
11. Lieberherr K.J., Orleans D., and Ovlinger J., Aspect-Oriented
Programming with Adaptive Methods, Communication of the ACM,
Vol.44, No.10, pp.39-41, Oct.2001.
12. Ossher H. and Tarr P., Multi-Dimensional Separation of
Concerns and the Hyperspace Approach, In Proc. the Symposium
on Software Architectures and Component Technology: The State
of the Art in Software Development, Kluwer, 2001.
13. The AspectJ team, The AspectJ Programming Guide,
http://eclipse.org/aspectj, May 2004.
14. Xu G. and Yang Z., JMLAutoTest: A Novel Automated Testing
Framework Based on JML and JUnit., In Proc. 3rd International
Workshop on Formal Approaches to Testing of
Software(FATES’03), pp. 118-127, Montreal, Canada, Oct.2003.,
also in LNCS vol.2931, Springer-Verlag, Jan. 2004.
15. Leavens G. T., Baker A. L., and Ruby C.. Preliminary design of
JML: A behavioral interface specification language for Java.
Technical Report TR 98-06i, Department of Computer Science,
Iowa State University, June 1998. (last revision: Aug 2001.)

