
Multi-Asp ectSystemAnalysisUsingStateMachinesExtracted fr om
Specifications in VDM–SL

KengoMiy oshi, Satoru Hirachi, ShigeruKusakabe,and Keijir o Araki
DepartmentComputerScienceandCommunication Engineering,

GraduateSchoolof InformationScienceandElectricalEngineering,
KyushuUniversity

6-10-1Hakozaki,Higashi-ku, Fukuoka812-8581,JAPAN
kengo,h satoru,kusakabe,araki@ale.csce.kyushu-u.ac.jp

ABSTRACT
Model-orientedformalspecificationlanguagessuchasVDM–
SL is usefulto describefunctional requirementsof thetarget
systems.However, sincesingle-aspect analysisis notenough
to makereliablespecifications,wealsouseotherapproaches
suchasmodelchecking to analyzedynamic aspectsof the
systemasa part of multi-aspect analysis. In this paper, we
discussour approachto extractstatemachinesfrom specifi-
cationsin VDM–SL. Wecananalyzebothstaticanddynamic
aspectby usingthesetwo different kindsof specificationlan-
guages, model-orientedand state-machine languages in an
integratedmanner.

Keywords
Formal Methods, Multi-Aspect Analysis,Formal Specifica-
tion, VDM–SL, StateMachine

INTRODUCTION
Formalmethods play a very important role in systemdevel-
opment. Therearemany kindsof specificationlanguagesfor
formal methodsin the literature. One of the mostpopular
typesof specificationlanguagesis model-orientedspecifica-
tion languagessuchasZ[1, 2] andVDM–SL(Vienna Devel-
opment MethodsSpecificationLanguage)[3, 4].

Authors mainly useVDM–SL to describe the functional re-
quirement of the system.It supports a mathematical model
built from simpledatatypes,alongwith functionsandopera-
tionson them.Oneof theimportant features of VDM–SL is
VDM Tools,a rich setof tools[5]. There arenot only syntax
andtypechecker but interpreterfor specificationsin VDM–
SL andgenerator for C++ andUML.

However, using only one kind of formal specificationlan-
guages is not enough. While VDM-SL is very useful to
describethe functional requirementsof the system,multi-
aspectanalysisis important to construct reliable specifica-
tions. Thus,although we mainly useVDM-SL in our sys-
tem development,we usedifferenttypesof meanssuchas

model checkingto analyze dynamic aspectsof the system
as a part of multi-aspectanalysis. In this paper, we pro-
posea methodto extract statemachineswritten in FSP(Fi-
nite StateProcesses)from specificationsin VDM–SL. After
trying to generatestatemachinesin PROMELA, a language
for a model checking tool SPIN[7], we find FSP is more
suitablefor our purpose. FSPis a textual notationof finite
statemachine models for LTSA (LabeledTransitionSystem
Analyzer)[8]. We cananalyze both staticanddynamic as-
pectby usingspecifications in thesetwo different kinds of
specificationlanguagesin anintegratedmanner.

Thereareso-called“modern model checking,” in whichstate
machinesareextractedfrom programsin conventionalpro-
gramming languages.However, asprogramsin conventional
programming languageshave a number of states,checking
statemachines extractedby suchapproachesfacesto state
spaceexplosion problem. We start from a specificationin
VDM–SL andanalyzethespecificationthrough a variant of
dataflow analysis.By startingfrom abstractbut rigorousfor-
malspecifications,wecanconstruct morereliablestatemod-
els with lessstatescompared to other approachesstarting
from conventionalprogramming languages.Thenwe gener-
atea statemachine modelin FSPandcomposeit with other
statemachinemodels to constructmodels of morecomplex
systemif necessary. We usethe statemachinemodels to
checkthedynamicbehavior of thesystemusingLTSA,atool
for FSP. In thispaper, weuseanexampleof traffic signalin a
textbook[3]. By usingourapproach,wecanseein acompre-
hensiveway thattheoriginalspecificationhasnodescription
of fairness.

MULTI -ASPECT ANALYSIS

Weusenotonly VDM–SL but alsootherapproachessuchas
model checking to analyzemulti-aspectof thetargetsystems
asshown in Figure 1.

Readingspecifications in VDM–SL is rathereasyoncewe



Analysis

Design

Implementation

UML

Development
with eUML

Development
with VDM

UML

UML

VDM*

VDM*

VDM*

 model-chek

prototyping
(functional language)

C++, Java

VDM*: VDM-SL & VDM++

Figure 1: Systemdevelopment using multi-aspect
analysis

havebecomefamiliarwith thelanguagebut describingafor-
mal specificationin VDM–SL from scratchis still very dif-
ficult evenif we arefamiliarwith thelanguage. As anintro-
ductionstepto construct formal models,weconstruct models
in intuitive but informal specificationlanguageUML (Uni-
fied Modeling Language)[10]. We alsousefunctional pro-
gramming languagestoprototypeformal specifications.Since
functional programming languagesaredeclarative one, it is
rathereasyto make prototypesin functional programming
languagesfrom specificationsin VDM–SL.

Although we canmake a state-basemodel in VDM–SL by
usingoperations,analyzing dynamic aspectsof the system
usingdifferent approachsuchasmodelcheckingis alsouse-
ful tomakereliablespecificationsof thetargetsystem.VDM–
SL is notsogood atdescribing andchecking dynamic behav-
iors of thesystem.Different from Z, VDM–SL hasaninter-
preterin VDM–Toolswhich support interpretationof speci-
ficationsin VDM–SL in addition to syntaxandtypechecks.
However, all specificationsare not supported by the inter-
preterin VDM–Tools. We canusestate-basedformal mod-
elseffectively to describeandcheckdynamicaspectsof the
system. Statemodels arealso very popular to analyze the
systemrequirements,but they are not so good at describ-
ing functional requirement. We intend to useboth model-
orientedspecifications and statemachine specifications to
analyzemulti-aspectsof the target systemin an integrated
fashion.

FSPand LTSA
Statemachinesare useful to model behaviors of the target
system. In the literature, several kinds of statemachines
have beenstudied. Purely state-basedformalism such as
Kripkestructures[6] areoftenusedto model andspecifysys-
tems. However, we usea kind of labeledtransitionsystems
(LTS) in which statetransitionsarelabeledby actions. We

areinterestedin a cooperative modelingmethodusingboth
model-orientedformal specificationlanguagesandstatema-
chinespecificationlanguages. In thespecificationin model-
orientedlanguage,statechangesareperformedimplicitly by
functions or explicitly by operations. We uselabeledtran-
sition system,aswe want to recognize the correspondence
betweena function (or anoperation) andanactionin thela-
beledtransitionsystems.Specifically, we useFSPnotation
andLISA Tool to analyzethestatemodelof thesystem.

Asweshow later, wetriedtousePROMELA butwefindFSP
is moresuitablefor our purpose.PROMELA is a language
for a modelchecking tool SPIN.Its descriptionis ratherlow
level like programming in C, andwe have to considermes-
sagepassingandcorresponding messagebuffers. After go-
ing through type checkof VDM–SL specification,we have
to programdifferent typesin PROMELA. Sincewe want to
examinestaticanddynamicaspectof thetargetsystemat the
sameabstractionlevel, the gapof descriptionlevel between
VDM–SL andPROMELA is not preferable.LTSA is a ver-
ification tool for concurrentsystems.It checks whether the
specificationof a concurrent systemsatisfiesthe properties
required of its behavior. In addition, LTSA supports specifi-
cationanimation through GUI to facilitateinteractive explo-
rationof systembehavior. By usingFSPandLTSA, we can
focus on dynamic aspectof the target systemat an abstract
level.

A systemin LTSA is modeled asa setof interactingfinite
statemachines,andthepropertiesrequired of thesystemare
alsomodeledasstatemachines. LTSA performs composi-
tional reachability analysis to exhaustively searchfor viola-
tionsof thedesiredproperties.More formally, eachcompo-
nent of a specificationis describedas an LTS, which con-
tainsall the statesa componentmay reachandall the tran-
sitionsit may perform. However, explicit description of an
LTS in termsof its states,setof actionlabelsandtransition
relationis cumbersomefor otherthansmall systems.Thus,
LTSA supports a processalgebranotation (FSP)for concise
description of component behavior. Thetool allows theLTS
corresponding to an FSPspecificationto be viewed graphi-
cally.

EXTRACTION OF STATE MACHINE
Ourmethod extractstatemachinesfromspecificationsin VDM-
SL by focusingondefinitionandmodification of variablesin
thespecification.

First we usea smallexample of a traffic signalwhosespeci-
ficationis shown below.



types

Light = <Red> | <Amber> | <Green>;

functions

ToGreen: Light -> Light
ToGreen(light) == <Green>
pre light = <Red>;

ToAmber: Light -> Light
ToAmber(light) == <Amber>
pre light = <Green>;

ToRed: Light -> Light
ToRed(light) == <Red>
pre light = <Amber>;

Thelight of thetraffic signalisassociatedwith thetypeLight
whosevalueis<Red>,<Amber>, or<Green>. Thechange
to <Green> is only possiblefrom <Red>. Thusthe func-
tion<ToGreen> hasapreconditionclaiminglight = <Red>.
Similar preconditions is claimedfor thefunction ToAmber
andToRed.

Model in FSP
Although VDM–SL hassyntaxfor modification, this speci-
ficationhasno explicit modification, andthereis no explicit
statechanges. We perform a kind of dataflow analysisto ex-
tract a statemachineembodied in this specification.These
functionsdo not havemodifications,anddo not construct an
explicit statemodel.However, thepair of input with precon-
dition andoutput of the Light type valuecan be usedto
construct a statemodel with actionson thevalue.

function input output

ToGreen Red:Light Green:Light
ToAmber Green:Light Amber:Light

ToRed Amber:Light Red:Light

Table1: Functionsandtheir input/output

Table1shows theresultof analyzing specificinput andout-
put of thesefunction. Now, we canseea chainof a dataflow
of a valueof theLight typeasshown in Figure2. Theexe-
cutionof thesefunctionsaretriggered by input argumentand
terminateafterreturning thererunvalue.Whenwe seethese
functionsasan actionin LTS, the precondition of the value
indicatesthe postcondition at the sourceof the action,and
thereturnvalueindicatesthetarget of theaction.By substi-
tuting a function with anaction,anda specificvaluewith a
statein Table1,wecangetTable2.

Now we canextract an LTS by the tool LTSA asshown in
Figure3 whichcanbewrittenasfollows in FSP.

TRAFFIC = (toGreen -> toAmber -> toRed ->

Figure2: Chainof action(function) on light value

action sourcestate targetstate

ToGreen state0/Red:Light state1/Green:Light
ToAmber state1/Green:Light state2/Amber:Light

ToRed state2/Amber:Light state0/Red:Light

Table2: Actionsandtheir source/target

TRAFFIC).

Extract ion of model in PROMELA
Asexplainedbefore,wetriedto describeaPROMELA model
from the sameVDM-SL specificationof traffic signal. We
decidedFSPis moresuitablethanPROMELA for our pur-
pose,we discussthe PROMELA modelfor the comparison
purpose.Thefollowing is thePROMELA modelwegotfrom
thesameVDM-SL specificationasbefore.

/* type definitions */
mtype = { RED, AMBER, GREEN };

/* global variables */
mtype light;

/* message channels */
chan signal_msg = [1] of { mtype };

/* inline definition */

inline ToGreen(l)
{

signal_msg?GREEN;
l = GREEN

}

inline ToAmber(l)
{

signal_msg?AMBER;
l = AMBER

}

Figure3: TRAFFICprocess



inline ToRed(l)
{

signal_msg?RED;
l = RED

}

/* process type */

proctype Signal()
{

do
::if

:: atomic { signal_msg?[GREEN] -> ToGreen(light)
signal_msg!AMBER }

:: atomic { signal_msg?[AMBER] -> ToAmber(light)
signal_msg!RED }

:: atomic { signal_msg?[RED] -> ToRed(light)
signal_msg!GREEN }

fi
od

}

init
{

signal_msg!GREEN;
run Signal()

}

”Proctype” is a declaration of processtype required before
instantiation.Instantiation canbe done with operatorssuch
as”run” at the time of declaration. In this model, ”Signal”
process is executed in ”init” process,a processexecuted at
first. And a part of processto be executed without inter-
ruption is insertedin a curly brackets, after a declaration
”atomic”.

ConversionbetweenVDM-SL specificationandPROMELA
model is asfollows. First, we convertedtype definitions in
theVDM-SL specificationto thosein PROMELA. Thevalue
of eachquotetypesof type”Light” wasrelatedto ”mtype”.
”Mtype” is oneof typesusedin PROMELA. The valuesof
”mtype” aresymbolic namesof constantvalues which is de-
finedby thepersonwho describethemodel. In PROMELA,
typeswecanusearesimilar to thoseof C.Whenwedescribe
amodel,wemustdefinetypesof statevariables.But thevari-
etyof typesin PROMELA arelessthanthosein VDM-SL. It
is difficult to describethetypeslikeaquotetypeof VDM-SL
specificationby usingPROMELA.

Next we described the functions in VDM-SL specification
by using”inline definition” in PROMELA. An ”inline defi-
nition” is likeaprocedurein PROMELA. It worksmuchlike
preprocessormacro. For example, the function ”ToGreen”
in VDM-SL specificationis describedas”inline ToGreen” in
PROMELA.

But we have problems when using PROMELA. When we
conduct model checkingat an analysis phase,we want to
construct an abstractmodel from a specificationin VDM–
SL, and examine the behavior of the model which reflects

our requirement specificationin VDM-SL. In the caseof
PROMELA, we have to describe detailedtype definition of
statevariables like C, but it is not preferable. Making con-
cretetypedefinitionsmaybeusefulin implementationphase,
but cumbersomein analysisphase.

The order of execution of the functions and operations is
not describedexplicitly in VDM-SL specifications.We can
guesstheexecution orderby analyzingfunctions,operations,
and their pre-condition andpost-condition in the specifica-
tion. However, whenwedescribeamodel in PROMELA, we
usuallydescribethebehavior of themodel explicitly by mes-
sagepassing.Sowhenwe extracta PROMELA modelfrom
aVDM-SL specification,wemustdecidetheexecutionorder
described in thespecificationimplicitly, anddescribesuchan
execution flow in anexplicit messagepassingstyle. In order
to describesthePROMELA model, we mustdescribewhen
andhow messagesshouldbesentandreceived. This maybe
possiblebut is cumbersomeandis not suitablefor our pur-
pose.

Our goal is to establisha systematicmethod to construct ab-
stractstatemodels from VDM-SL specificationsat an anal-
ysis phase of systemdevelopmentprocess. The problems
discussedabove hinderour approach. Although morededi-
catedwork mayhelpusto solve theseproblems,it will need
a lot of time. Fromthereasonexplainedabove, we decided
to useanotherlanguage,FSP, which candescribemodels in
abstractandsimplenotation comparedto PROMELA.

EXTRACTION OF COMPOSED MODEL

We considera morecomplex traffic signalsystem[3], which
needprocesscomposition. As traffic light control is safety
critical systemandin thissectionweconsiderasafetykernel
of thesystemusingtheprevioussimpleexample. Thesafety
kernel provides the only meansof control over the critical
functions of the system.Sincethe kernel is responsiblefor
maintaining safety, it is worthmodeling it atanabstractlevel
atanearlystageof development, sothatthedesignershavea
clearunderstandingof how thekernel shouldbehave.

Eachtraffic light atanintersectionis responsiblefor inform-
ing drivers, modeled as in the previous example, whether
they candrive throughtheintersectionor whetherthey must
wait. A greenlight is usedto indicatethatdrivers cancon-
tinueandaredlight is usedto indicatethatdriversmuststop.
Theamber light is usedto indicatethatthelightsareabout to
changefrom greento red.A traffic light controller is respon-
sible for controlling the lights. Thesafetykernelfor sucha
controller shouldensurethat the light do not permit traffic
to flow in conflicting pathssimultaneously. A light associ-



atedwith aparticularpathmayonly changeaccording to the
transitionshown above.

Basically, we consider thesameexample as[3], but we omit
the timing constraint for simplicity. We focus on the fol-
lowing requirementfor the safetykernelof the traffic light
controller.

It mustalwaysbethecasethat if a pair of pathsconflict
thenthelights associatedwith oneof thepathis red.

Wehavefour traffic signalsfor paths,A1North,A1South,
A66East, andA66West. We have to integratefour traffic
signalsto construct asystemfor anintersection.

01: values
02:
03: p1 : Path = mk_token("A1North");
04: p2 : Path = mk_token("A1South");
05: p3 : Path = mk_token("A66East");
06: p4 : Path = mk_token("A66West");
07:
08: lights : map Path to Light
09: = {p1 |-> <Red>,
10: p2 |-> <Red>,
11: p3 |-> <Green>,
12: p4 |-> <Green>};
13:
14: conflicts : set of Conflict
15: = {mk_Conflict(p1,p3),
16: mk_Conflict(p1,p4),
17: mk_Conflict(p2,p3),
18: mk_Conflict(p2,p4),
19: mk_Conflict(p3,p1),
20: mk_Conflict(p4,p1),
21: mk_Conflict(p3,p2),
22: mk_Conflict(p4,p2)};
23:
24: kernel : Kernel
25: = mk_Kernel(lights,conflicts)
26:
27: types
28:
29: Light = <Red> | <Amber> | <Green>;
30:
31: Time = real
32: inv time == time >= 0;
33:
34: Path = token;
35:
36: Conflict :: path1: Path
37: path2: Path
38: inv mk_Conflict(p1,p2) == p1 <> p2;
39:
40: Kernel :: lights : map Path to Light
41: conflicts : set of Conflict
42: inv mk_Kernel(ls,cs) ==
43: forall conflicts in set cs &
44: mk_Conflict(conflicts.path2,
45: conflicts.path1)
46: in set cs and
47: conflicts.path1 in set dom ls and
48: conflicts.path2 in set dom ls and
49: (ls(conflicts.path1) = <Red> or
50: ls(conflicts.path2) = <Red>)
51:
52: functions
53:
54: ToGreen: Path * Kernel -> Kernel
55: ToGreen(p, mk_Kernel(lights,conflicts)) ==
56: mk_Kernel(ChgLight(lights,p,<Green>),
57: conflicts)
58: pre p in set dom lights and
59: lights(p) = <Red> and
60: forall mk_Conflict(p1,p2)

61: in set conflicts &
62: (p = p1 =>
63: lights(p2) = <Red>);
64:
65: ToRed: Path * Kernel -> Kernel
66: ToRed(p, mk_Kernel(lights,conflicts)) ==
67: mk_Kernel(ChgLight(lights,p,<Red>),
68: conflicts)
69: pre p in set dom lights and
70: lights(p) = <Amber>;
71:
72: ToAmber: Path * Kernel -> Kernel
73: ToAmber(p, mk_Kernel(lights,conflicts)) ==
74: mk_Kernel(ChgLight(lights,p,<Amber>),
75: conflicts)
76: pre p in set dom lights and
77: lights(p) = <Green>;
78:
79: ChgLight: (map Path to Light) * Path *
80: Light -> (map Path to Light)
81: ChgLight(ls,p,colour) ==
82: ls ++ {p |-> colour}

Sincetwo traffic signalsat theoppositesideof thesameroad
mustbe the sameandour main focus is conflict, suchtwo
traffic lightscanbeberepresented asonestatemachine.

First we look for explicit modification in this specification.
Thereisanexplicit modificationls ++ {p |-> colour}

in thefunction Chglight (line 82). Thismodifies themap-
ping ls so that in the rangeof the mappingthe associated
valuewith the valuep in the domain of the mapping is set
to colour. Thus, thefunctionChglight modifies its first
argumentusingits secondandthird argumentandreturnsthe
modified valueasits result. Though we canseethis modifi-
cationasa statechange, the specificvalueis parameterized
andwe cannot makea statemachineonly from Chglight.

Next we examine the usageof Chglight to seehow this
function is instantiatedwith actualvalues. Threefunctions
ToGreen (line 54), ToRed (line 65) andToAmber (line
72)useChglight asChgLight(lights,p,<Green>)
(line 56), ChgLight(lights,p,<Amber>) (line 67),
andChgLight(lights,p,<Amber>) (line 74), respec-
tively. The return value of thesefunctions is the Kernel
type value (line 40) and the value of the secondargument
of thesefunctions except that its first field is modified by
Chglight. This modificationneedsto consumelights
andp, and thesefunctions have a precondition concerning
lights andp. Table3 shows their precondition andmodi-
ficationonlights(p) for eachfunction.

Now, we canseea chainof the value of lights(p) sim-
ilar to Figure2,but the chainis parameterizedby p. When
we seethesefunctionsasanactionin LTS, theprecondition
indicatesthe modification resultat the source of the action,
andthemodificationresultindicatesthetarget of theaction.
By substitutinga function in Table3 with anaction,andalso
aspecificmapping valuewith a state,we cangetTable4.



function precondition modification

ToGreen lights(p)=Red lights(p)=Green
ToAmber lights(p)=Green lights(p)=Amber

ToRed lights(p)=Amber lights(p)=Red

Table 3: Precondition and modification on
lights(p) for eachfunction.

action sourcestate targetstate

ToGreen state0/lights(p)=Red state1/lights(p)=Green
ToAmber state1/lights(p)=Green state2/lights(p)=Amber

ToRed state2/lights(p)=Amber state0/lights(p)=Red

Table4: Actionsandtheir source/target

Pleasenote this statemachine is parameterizedby p. We
have additional precondition in thefunction ToGreen (line
60 ... 63) to composea systemfrom theparameterizedstate
machines. This claims that every pathp2 crossingwith p

must have the mapping lights(p2)=Red, or be in the
state”state0.” Thus ToGreen can make the change when
—lights(p)=Red—andeverypathp2 crossingwith p hasthe
mappinglights(p2)=Red (bothp andp2 arein ”state0”).

In this caseit is enough to considerthe paths p1 andp3 at
thetop level. Thecomposition is describedprocesslabelling
by asetof prefix labelsin FSPasfollows.

TRAFFIC = (toGreen -> toAmber -> toRed ->
TRAFFIC).

RESOURCE = (toGreen -> toRed -> RESOURCE).

||TRAFFICS = (p1 : TRAFFIC || p3 : TRAFFIC
||{p1, p3}::RESOURCE).

Processprefixingisusefulfor modellingsharedresourcesbe-
tweenconcurrentactivities. In this case,we regard ”Green”
as a sharedresource to be acquired exclusively. From the
above FSP, we can generateLTS by the tool LTSA as de-
pictedin Figure4

Figure4: TRAFFICSProcess

We cancheckthat the”Green” stateis acquired exclusively.
However, we canfind no control regarding fairnessis given
in this specification.A transitionpath like p1.toGreen,
p1.toAmber, p1.toRed andp1.toGreen is legal in
thisspecification.Somecontrol regarding fairnessshouldbe
given in thefollowing development.

CONCLUSION
In this paper, we discussedour approachto extractstatema-
chineswritten in FSP, a notation of a labeledtransitionsys-
tem,from specificationsin VDM–SL asa partof our multi-
aspectsystemanalysis. After trying to generate statema-
chinesin PROMELA, a languagefor a model checkingtool
SPIN,we found FSPis more suitablefor our purpose. We
cananalyzeboth staticanddynamic aspectby using these
twodifferent kindsof specificationlanguages,model-oriented
andstate-machinelanguagesin anintegratedmanner.

REFERENCES
1. J. M. Spivey. “The Z Notation: A ReferenceManual

SecondEdition.” PrenticeHall, 1992.

2. JonathanBowen.“Virtual Library: Z notation.”
http://hello.to/zed/

3. JohnFitzgerald,and PeterGorm Larsen.“Modelling
Systems.” Cambridge University Press,1998.

4. John Fitzgerald. “Inf ormation on VDM.”
http://www.csr.ncl.ac.uk/vdm/

5. “The IFAD VDM Tools.” http://www.ifad.dk/

6. E.M. Clarke,OrnaGrumberg andDoronPeled”Model
Checking,” MIT Press,2000.

7. Gerard J. Holzmann ”The SPIN Model Checker:
PrimerandReferenceManual,” AddisonWesley, 2004

8. “LTSA - LabelledTransitionSystemAnalyser,”
http://www.doc.ic.ac.uk/ltsa/.

9. Jeff MageeandJeff Kramer ”Concurrency: StateMod-
els& Java Programs,” JohnWiley & Sons,1999.

10. ”UML(T M) ResourcePage,” http://www.uml.org/

11. Bruce Douglass.“Real-Time UML: Developing Effi-
cientObjectsfor EmbeddedSystemsSecondEdition.”
Addison-Wesley, 2000.

12. Harel, David. “Statecharts: a Visual Formalism for
Complex Systems.” Scienceof ComputerProgramming
8, 1987, 231-274.

13. Bandera Project,
http://bandera.projects.cis.ksu.edu/.


